RE: Integrate bug
- To: "mathgroup at yoda.ncsa.uiuc.edu"@gte.com
- Subject: RE: Integrate bug
- From: blachman%gtewd.dnet at gte.com (NELSON M. BLACHMAN)
- Date: Mon, 25 Feb 91 17:00:49 -0500
Mathematica (MS-DOS 386/7) 1.2 (September 27, 1989) [With pre-loaded data] by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin, S. Omohundro, D. Ballman and J. Keiper with I. Rivin, D. Withoff and T. Sherlock Copyright 1988,1989 Wolfram Research Inc. In[1]:= Integrate[E^(I x) Cos[x], {x, 0, 2Pi}] Out[1]= 0 (Wrong!) In[2]:= Integrate[Cos[ x] Cos[x], {x, 0, 2Pi}] Out[2]= Pi (Right!) In[3]:= Integrate[Sin[ x] Cos[x], {x, 0, 2Pi}] Out[3]= 0 (Right!) In[4]:= Integrate[(Cos[x] + I Sin[x]) Cos[x], {x, 0, 2Pi}] Out[4]= Pi (Right!) In[5]:= Integrate[E^(I x) (E^(I x) + E^(-I x))/2, {x, 0, 2 Pi}] Out[5]= 0 (Wrong!) In[13]:= Integrate[E^(I x) Cos[x], x] -I 2 I x -I I x Out[13]= -- E + -- Log[E ] (Right but absurd!) 4 2 Mathematica's error in evaluating the definite integral evidently stems from evaluating this absurd logarithm on the wrong Riemann sheet. Evidently Mma notices that E^{I x} d E^{I x} E^{I x} E^{-I x} = ------- = - I --------- / E^{I x}, E^{I x} dx thus finding the indefinite integral of this expression to be -I Log[E^{I x}] without ever noticing the cancellation that was possible at the very start. Nelson M. Blachman GTE Government Systems Corp. Mountain View, California blachman%gtewd.dnet at gte.com