PolynomialQ
- To: mathgroup at yoda.ncsa.uiuc.edu
- Subject: PolynomialQ
- From: Markus Lautenbacher <lauten at srv.cip.Physik.TU-Muenchen.DE>
- Date: Fri, 11 Jan 91 19:46:51 +0100
In response to jack at chopin.udel.edu (Jack Seltzer)'s "PolynomialQ" question bc at uxa.cso.uiuc.edu (Ben Cox) writes: > No, this is correct. PolynomialQ[expr,{x}] fails only if expr uses x in > such a way that would forbid it (e.g., Log[x]). > This is mathematically correct: 0 is a polynomial in x, for example. ,but then what about the following example form the MATHEMATICA book (page 383): >> Mathematica (sun4) 1.2 (June 13, 1990) [With pre-loaded data] >> by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin, >> S. Omohundro, D. Ballman and J. Keiper >> with I. Rivin and D. Withoff >> Copyright 1988,1989,1990 Wolfram Research Inc. >> -- X11 windows graphics initialized -- >> >> In[1]:= t = Expand[ (1+x)^3 (1-y-x)^2 ] >> 2 3 4 5 3 4 2 >> Out[1]= 1 + x - 2 x - 2 x + x + x - 2 y - 4 x y + 4 x y + 2 x y + y >> >> 2 2 2 3 2 >> > + 3 x y + 3 x y + x y >> >> In[2]:= PolynomialQ[t,x] >> >> Out[2]= True while the book states that this should give "Out[3]= False" !. So the "bug claim" doesn't seem to be wiped off. MARKUS +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ # MARKUS E. LAUTENBACHER, # # office: Technical University Munich, Physics Department # # Theoretical Physics T31, WD-8046 Garching, FRG # # phone: 0049/89/3209-2398 # # INTERNET: lauten at ds0.cip.physik.tu-muenchen.de # # private: Gohrenstr. 4/319, WD-8000 Muenchen 19, FRG # #-------------------------------------------------------------------------# # SIR ERNEST RUTHERFORD: `Science is physics, and the rest is # # stamp collecting' # # Surely Rutherford (1871-1937) knew nothing about computers! ;-) # +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+