Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1992
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1992

[Date Index] [Thread Index] [Author Index]

Search the Archive

[no subject]

  • To: mathgroup at yoda.physics.unc.edu
  • From: Cetin Cetinkaya <cetin%acm2 at yoda.physics.unc.edu>
  • Date: Sun, 9 Aug 1992 16:47:27 -0500

 
Consider the following MMA session:
------------------------------------------------------------------------------

Mathematica 2.0 for Sun3 68881 (June 22, 1991)
Copyright 1988-91 Wolfram Research, Inc.
 -- Terminal graphics initialized -- 

In[1]:= Expand[(x-1.)^6]

                         2        3        4       5    6
Out[1]= 1. - 6. x + 15. x  - 20. x  + 15. x  - 6. x  + x

In[2]:= N[%,20]

                         2        3        4       5    6
Out[2]= 1. - 6. x + 15. x  - 20. x  + 15. x  - 6. x  + x

In[3]:= Factor[%]

                                                              2
Out[3]= (-1. + x) (-1. + x) (-1. + x) (-1. + x) (1. - 2. x + x )

In[4]:= N[%,20]

Out[4]= (-1.000000000000198 + x) (-1.000000000000178 + x) 
 
>    (-1.000000000000001 + x) (-0.999999999999942 + x) 
 
                                                 2
>    (0.999999999999681 - 1.999999999999681 x + x )

In[5]:= Factor[%]

Out[5]= (-1. + x) (-1. + x) (-1. + x) (-1. + x) (-1. + x) (-1. + x)

In[6]:= N[%,20]

Out[6]= (-1.000000000000198 + x) (-1.000000000000178 + x) 
 
>    (-1.000000000000001 + x) (-0.999999999999942 + x) 
 
>    (-0.999999999999841 + x) (-0.99999999999984 + x) 


-------------------------------------------------------------------------------

Logical question: How many Factor[ ] is neccesary to factorize an expression?





  • Prev by Date: Re: timing of Table operation
  • Next by Date: Re: Evaluating Min[2^(1/2),3^(1/2)]
  • Previous by thread: Re: timing of Table operation
  • Next by thread: Re: Evaluating Min[2^(1/2),3^(1/2)]