About NonCommutativeMultiply
- To: mathgroup at yoda.physics.unc.edu
- Subject: About NonCommutativeMultiply
- From: <flaminio at math.ufl.edu>
- Date: Fri, 31 Jan 92 14:23:54 EST
In an attempt to define a non commutative algebra over the complex by using NonCommutativeMultiply I defined Unprotect[NonCommutativeMultiply] NonCommutativeMultiply[ a_ + b_ ,c_ ]:= NonCommutativeMultiply[ a ,c] + NonCommutativeMultiply[ b ,c] NonCommutativeMultiply[ a_ , b_ + c_]:= NonCommutativeMultiply[ a ,b] + NonCommutativeMultiply[ a ,c] NonCommutativeMultiply[ Times[a_ ,b_] , Times[d_ ,c_]]:= Times[Times[a, d] ,NonCommutativeMultiply[ b , c]] /; NumberQ[a] && NumberQ[d] But this does not produces the semplifications I wanted. For example setting: brac[a_, b_]:= a**b - b**a mplus= (x - I y) /2 mminus= (x+ I y)/2 brac[mplus, mminus] produces the following output x ** x + x ** (I y) + (-I y) ** x + y ** y ------------------------------------------ 4 where the semplifications x ** (I y) = I x ** y and (-I y) ** x = -I y ** x have not been carried out. Any clue of why that is the case? By the way the (mathematically) equivalent definition mplus= x/2 - I y/2 mminus= x/2 + I y/2 do produce all the sempligfication I wanted. livio flaminio