Boolean algebra package
- To: MATHGROUP at yoda.physics.unc.edu
- Subject: Boolean algebra package
- From: cfw2 at po.cwru.edu (Charles F. Wells)
- Date: Tue, 13 Oct 92 16:53:23 -0400
Some time ago someone asked for a package of Boolean algebra functions. One was supplied that used 0 and 1 for false and true. Below is a package that uses the built-in Mathematica symbols True and False. Hope someone finds it useful. cut here----------------------------------- (* Package for manipulation of Boolean expressions as functions of the built-in Mathematica True and False symbols. Version of 12 October 1992. By Charles Wells, Department of Mathematics, Case Western Reserve University, Cleveland OH 44106-7058, USA. Email: cfw2 at po.cwru.edu. *) (* Copyright 1992 by Charles F. Wells. This package may be freely distributed for noncommercial purposes provided that no changes are made. *) (* This package was developed with the support of the Consolidated Natural Gas Company. *) Off[General::spelll] BeginPackage["Bool`"] TruthTable::usage = "TruthTable[e] produces the truth table of the Boolean expression e. Known bug: The table header cuts off right brackets from a nested expression. The table itself is correct." Equivalent::usage = "p ~Equivalent~ q returns True if p and q have the same truth value. Otherwise it returns false. This fills in a gap in the functions supplied by Mathematica." TautologyQ::usage = "TautologyQ[e] returns True if e is a Boolean expression that is a tautology. It returns False if it is a Boolean expression but not a tautology." DNF::usage = "DNF[e] returns the Disjunctive Normal Form of the Boolean expression e. The form returned is a string, not an expression, but ToExpression can be applied to it to make it an expression." CNF::usage = "CNF[e] returns the Conjunctive Normal Form of the Boolean expression e. The form returned is a string, not an expression, but ToExpression can be applied to it to make it an expression." Begin["`private`"] (* TT produces a list of all possible truth value combinations. *) TT[1] := {{True},{False}} TT[n_ /; n>1] := T[n] = Join[Map[Prepend[#,True]&,TT[n-1]], Map[Prepend[#,False]&,TT[n-1]]] SymbolQ[x_] := If[Head[x]==Symbol,True,False,False] (* VariableSet extracts the set of variables in an expression. *) VariableSet[e_] := Select[Union[Level[e, {-1}]],SymbolQ] MakeArgs[l_List] := StringReplace[ToString[l], {"," -> "_,","{" -> "[", "}" -> "_]"}] (* MakeFunction defines the function f to have the value of the expression e. *) MakeFunction[e_,f_] := ToExpression[StringJoin[f // ToString, MakeArgs[VariableSet[e]], " := ", e // InputForm // HoldForm //ToString]] Abb[True] := "T" Abb[False] := "F" SetAttributes[Abb,Listable] TruthTable[e_] := Module[{args = VariableSet[e], expr=InString[$Line],list,lbracket,rbracket,n,ff}, (MakeFunction[e,ff]; n = Length[args]; lbracket=StringPosition[expr,"[",1][[1]][[1]]; rbracket=StringPosition[expr,"]",1][[1]][[1]]; list = MapThread[Join, {TT[n],Map[List[Apply[ff,#]]&,TT[n]]}] // Abb; list = Prepend[list, Join[args,{StringTake[expr,{lbracket+1,rbracket-1}]}]]; TableForm[list, TableAlignments-> Center, TableSpacing -> {0,2}])] TruthList[f_, n_Integer /; n>0] := Map[List[Apply[f,#]]&,TT[n]] TautologyQ[e_] := Module[{args = VariableSet[e],n,ff}, (MakeFunction[e,ff]; n = Length[args]; Union[TruthList[ff,n]]=={{True}})] Equivalent[p_,q_] := If[p,q,!q] (* MakeAtom[b,c] takes a Boolean expression b and a string c and returns the string c if b is true and the string !c if b is false. *) MakeAtom[{b_,c_String}] := If[b,c,"!"<>c] (* SymbolicApply produces a string consisting of the entries of the list l with x between each pair of them. *) SymbolicApply[l_List,x_String] := Module[{n=Length[l]}, Join[Map[StringJoin[#,x]&, Take[l,n-1]],{l[[n]]}] // StringJoin] DNF[e_] := Module[{args = Map[ToString,VariableSet[e]], expr=InString[$Line],list,n,ff}, If[!TautologyQ[!(e)], (MakeFunction[e,ff]; n = Length[args]; list = Map[Transpose[List[#,args]]&, Select[TT[n],Apply[ff,#]&]]; list = Map[Map[MakeAtom,#]&,list]; SymbolicApply[Map[ StringJoin[ "(",SymbolicApply[#," && "],")"]&,list], " || "] ),"()"] (* End If *) ] CNF[e_] := Module[{args = Map[ToString,VariableSet[e]], expr=InString[$Line],list,n,ff}, If[!TautologyQ[e], (MakeFunction[e,ff]; n = Length[args]; list = Map[Transpose[List[Map[Not,#],args]]&, Select[TT[n],!Apply[ff,#]&]]; list = Map[Map[MakeAtom,#]&,list]; SymbolicApply[Map[ StringJoin[ "(",SymbolicApply[#," || "],")"]&,list], " && "] ),"()"] (* End If *) ] End[] EndPackage[] ---------------------------cut here Charles Wells Department of Mathematics, Case Western Reserve University University Circle, Cleveland, OH 44106-7058, USA 216 368 2893