Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1993
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1993

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Boundary Value Problems

  • To: mathgroup at yoda.physics.unc.edu
  • Subject: Re: Boundary Value Problems
  • From: leon at physics.su.oz.au
  • Date: Fri, 26 Feb 1993 11:22:04 +1000

Javid Attai writes
>
>I'd like to get a power series solution to the following differential equation:
>
> D[a[r],{r,2}] + (D[a[r],{r,1}])/r - 0.5 a[r] + (a[r])^3/(1+(a[r])^2) = 0
>
>The boundary conditions are
>
>a[0] = 2.5
>a[Infinity] = 0
>
>da |
>-- |        = 0
>dr | r = 0
>
>
>da |
>-- |            = 0
>dr | r = Infinity
>
>My attempts to solve this problem have been unsuccessful.
>
>
>Any help will be most appreciated.
>

The following short sequence finds power series solutions to any number of
terms, limited only by memory and time. The boundary conditions at 0 have
been automatically included.

        DE = D[a[r],{r,2}] + D[a[r],r]/r - a[r]/2 + a[r]^3/(1+a[r]^2);

        nterms = 20;

        vars = Table[ c[n], {n,2,nterms}];

        a[r_] = 2.5 + Sum[ c[n] r^n, {n,2,nterms}];

        seriesDE = LogicalExpand[Series[DE,{r,0,nterms-2}]==0];

        soln = a[r] /. Solve[seriesDE, vars]

For this particular example, more efficiency can be obtained by realizing
that all the odd coefficients are identically zero.

Unfortunately, as a general technique for solving boundary value problems,
a series solution is unlikely to have a radius of convergence that extends
out to infinity and so will be of limited value.



Leon Poladian                           ======                ======  
Optical Fibre Technology Centre               \\            //
University of Sydney NSW 2006                   ============
AUSTRALIA                                       ============         
PHONE   +61 2 692 4670                        //            \\
FAX     +61 2 692 4671                  ======                ====== 






  • Prev by Date: Running remotely from Indigo
  • Next by Date: Physics Undergraduate Curriculum
  • Previous by thread: Boundary Value Problems
  • Next by thread: time series analysis