Eliminate
- To: mathgroup at yoda.physics.unc.edu
- Subject: Eliminate
- From: puglisi at settimo.italtel.it
- Date: Mon, 4 Oct 93 15:43:10 MDT
>>> Sergio Rescia writes: > > I am trying to use Eliminate to eliminate the unknown y in a system of 2 equations: > > In[1]:= Eliminate[{ (x-a)^2+(y-b)^2==r^2 , > x^2+y^2==9 }, {y}] > > 4 2 2 2 > Out[1]= r + r (-18 - 2 a - 2 b + 4 a x) == > > 2 4 2 2 2 4 3 2 > > -81 - 18 a - a + 18 b - 2 a b - b + 36 a x + 4 a x + 4 a b x - > > 2 2 2 2 > > 4 a x - 4 b x > > > Is there any way to force Eliminate to produce a result in the form: > > expr==0 > > Or better yet there is any smart way to compute directly the discriminant of the second degree equation > (in x) Out[1]? > > Thank you. > > Sergio rescia > > Here is an answer: In[5]:= eq={(-a + x)^2 + (-b + y)^2 == r^2, x^2 + y^2 == 9} Out[5]= {(-a + x)^2 + (-b + y)^2 == r^2, x^2 + y^2 == 9} In[6]:= Solve[eq,x,y] Out[6]= {{x -> (-(a*(-4 - 36/(a^2 + b^2) + (4*r^2)/(a^2 + b^2))) + (a^2*(-4 - 36/(a^2 + b^2) + (4*r^2)/(a^2 + b^2))^2 - 16*(18 + a^2 + b^2 + 81/(a^2 + b^2) - (36*b^2)/(a^2 + b^2) - 2*r^2 - (18*r^2)/(a^2 + b^2) + r^4/(a^2 + b^2)))^(1/2))/8}, {x -> (-(a*(-4 - 36/(a^2 + b^2) + (4*r^2)/(a^2 + b^2))) - (a^2*(-4 - 36/(a^2 + b^2) + (4*r^2)/(a^2 + b^2))^2 - 16*(18 + a^2 + b^2 + 81/(a^2 + b^2) - (36*b^2)/(a^2 + b^2) - 2*r^2 - (18*r^2)/(a^2 + b^2) + r^4/(a^2 + b^2)))^(1/2))/8}} In[7]:= Eliminate[eq,y] Out[7]= b != 0 && a^4 - 4*a^3*x + a*(-36 - 4*b^2 + 4*r^2)*x + a^2*(18 + 2*b^2 - 2*r^2 + 4*x^2) == -81 + 18*b^2 - b^4 + 18*r^2 + 2*b^2*r^2 - r^4 - 4*b^2*x^2 || b == 0 && a^2 - 2*a*x == -9 + r^2 Alberto Puglisi Italtel R&D Milan, Italy Internet: puglisi at settimo.italtel.it