Re: Question
- To: mathgroup at christensen.cybernetics.net
- Subject: [mg465] Re: [mg450] Question
- From: bob Hanlon <hanlon at pafosu2.hq.af.mil>
- Date: Mon, 13 Feb 1995 23:23:49
A further simplification can be made by converting the incomplete gamma function to a confluent hypergeometric function. The form of the function is then h[a_Real, b_Real, c_Real] := Hypergeometric1F1[1, 1 + c/b, -a]/c; (* Abramowitz & Stegun, eqn. 6.5.12 *) On Sun, 12 Feb 1995, bob Hanlon wrote: > > Message-Id: <9502080805.AA13790 at christensen.cybernetics.net.> > > Date: Tue, 7 Feb 1995 12:08:01 -0500 > > To: mathgroup at christensen.cybernetics.net > > From: deburm at tiac.net (David E. Burmaster) > > Subject: [mg450] Question > > > > +++++++++++++++ > > > > Dear MathGroup: > > > > Any suggestions on how to integrate this function from zero to +Infinity?? > > > > a, b, and c are positive constants > > > > a is approx 0.75 > > b is approx 4 > > c is approx 0.1 > > > > Here is the function that I wish to integrate > > > > S = Exp[ -1 ( a (1 - Exp[ -b t]) + c t ) ] > > > > ++++++ > > > > NIntegrate should do the job, but I am hoping to find a closed-form > solution > > > > I couldn't find any simple way of doing it in Mathematica, so I looked it > up in a table. > > Bob Hanlon > hanlon at pafosu2.hq.af.mil > > ____________________ > > Clear[f, g]; > > f[a_Real, b_Real, c_Real] := > NIntegrate[Exp[-1 (a (1 - Exp[-b t]) + c t)], > {t, 0, Infinity}]; > > g[a_Real, b_Real, c_Real /; c/b > 0] := > Exp[-a] (-a)^(-c/b) Gamma[c/b, 0, -a]/b // Chop > (* Gradshteyn & Ryzhik, 4th Edition, 1965, Eqn. 3.331.1 *) > > Table[{{a, b, c}, f[a, b, c], g[a, b, c]}, > {a, 0.5, 1.0, 0.25}, {b, 3.5, 4.5, 0.5}, {c, 0.08, 0.12, 0.02}] > > {{{{{0.5, 3.5, 0.08}, 7.67837, 7.67837}, > > {{0.5, 3.5, 0.1}, 6.16154, 6.16154}, > > {{0.5, 3.5, 0.12}, 5.15016, 5.15016}}, > > {{{0.5, 4., 0.08}, 7.6665, 7.6665}, > > {{0.5, 4., 0.1}, 6.14978, 6.14978}, > > {{0.5, 4., 0.12}, 5.13852, 5.13852}}, > > {{{0.5, 4.5, 0.08}, 7.65722, 7.65722}, > > {{0.5, 4.5, 0.1}, 6.14059, 6.14059}, > > {{0.5, 4.5, 0.12}, 5.1294, 5.1294}}}, > > {{{{0.75, 3.5, 0.08}, 6.02595, 6.02595}, > > {{0.75, 3.5, 0.1}, 4.84442, 4.84442}, > > {{0.75, 3.5, 0.12}, 4.05654, 4.05654}}, > > {{{0.75, 4., 0.08}, 6.01104, 6.01104}, > > {{0.75, 4., 0.1}, 4.82966, 4.82966}, > > {{0.75, 4., 0.12}, 4.04192, 4.04192}}, > > {{{0.75, 4.5, 0.08}, 5.9994, 5.9994}, > > {{0.75, 4.5, 0.1}, 4.81811, 4.81811}, > > {{0.75, 4.5, 0.12}, 4.03047, 4.03047}}}, > > {{{{1., 3.5, 0.08}, 4.73432, 4.73432}, > > {{1., 3.5, 0.1}, 3.81396, 3.81396}, > > {{1., 3.5, 0.12}, 3.20018, 3.20018}}, > > {{{1., 4., 0.08}, 4.71763, 4.71763}, > > {{1., 4., 0.1}, 3.79743, 3.79743}, > > {{1., 4., 0.12}, 3.18379, 3.18379}}, > > {{{1., 4.5, 0.08}, 4.70459, 4.70459}, > > {{1., 4.5, 0.1}, 3.78449, 3.78449}, > > {{1., 4.5, 0.12}, 3.17096, 3.17096}}}} > >