Re: Shortening Polynomials
- To: mathgroup at christensen.cybernetics.net
- Subject: [mg425] Re: Shortening Polynomials
- From: olness at phyvms.physics.smu.edu (Fredrick Olness (214) 768-2500 or -2495, Fax -4095)
- Date: Tue, 24 Jan 1995 15:35:59 -0600
> Stephen Corcoran (corcoran%markov.stats at comlab.oxford.ac.uk) writes: > Dear Mathgroupers, > Many thanks for all the replies I got for my previous > requests. I have a feeling this may be trivial, but I > often want to shorten polynomials, after using Expand. > Is there a neater way to collect powers up to order m > after expanding a polynomial? > > Thanks, Stephen ========================================================== t1 = a0 + a1 q + a2 q^2; t2=Expand[t1^4]; ========================================================== YOUR METHOD t3= t2/. {q^3->0,q^4->0,q^5->0,q^6->0,q^7->0,q^8->0} 4 3 2 2 2 3 2 a0 + 4 a0 a1 q + 6 a0 a1 q + 4 a0 a2 q ========================================================== AN EFFICIENT METHOD t4=t2 + O[q]^3 4 3 2 2 3 2 3 a0 + 4 a0 a1 q + (6 a0 a1 + 4 a0 a2) q + O[q] ========================================================== CROSS CHECK t3 == t4 //Normal //ExpandAll True The Series command will also work. ========================================================== Fredrick I. Olness SMU Mail: Department of Physics Fondren Science Bldg. Southern Methodist University Dallas, TX 75275 Internet: Olness at phyvms.physics.smu.edu (129.119.200.74) Olness at mail.physics.smu.edu