Re: I'm looking for an algorithm: Cartesian Product

*To*: mathgroup at christensen.cybernetics.net*Subject*: [mg1663] Re: I'm looking for an algorithm: Cartesian Product*From*: wagner at bullwinkle.cs.Colorado.EDU (Dave Wagner)*Date*: Tue, 11 Jul 1995 03:57:13 -0400*Organization*: University of Colorado, Boulder

In article <3ti27l$klt at news0.cybernetics.net>, Hala Skaf <Hala.Skaf at loria.fr> wrote: > >Hello, > > I'm looking for an algorithm that can compute > Cartesian Product for several sets. For example: > > How can I compute the Cartesian Product of: > > E1={a1 a2} E2={b1 b2 b3} E3={z1 z2} > In[3]:= Outer[List, {a1, a2}, {b1, b2, b3}, {z1, z2}] Out[3]= {{{{a1, b1, z1}, {a1, b1, z2}}, {{a1, b2, z1}, {a1, b2, z2}}, {{a1, b3, z1}, {a1, b3, z2}}}, {{{a2, b1, z1}, {a2, b1, z2}}, {{a2, b2, z1}, {a2, b2, z2}}, {{a2, b3, z1}, {a2, b3, z2}}}} In[4]:= Flatten[%, 2] Out[4]= {{a1, b1, z1}, {a1, b1, z2}, {a1, b2, z1}, {a1, b2, z2}, {a1, b3, z1}, {a1, b3, z2}, {a2, b1, z1}, {a2, b1, z2}, {a2, b2, z1}, {a2, b2, z2}, {a2, b3, z1}, {a2, b3, z2}} Dave Wagner Principia Consulting (303) 786-8371 dbwagner at princon.com http://www.princon.com/princon