Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1995
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1995

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Polonomyal Quotient

  • To: mathgroup at smc.vnet.net
  • Subject: [mg2374] Re: Polonomyal Quotient
  • From: danl (Daniel Lichtblau)
  • Date: Sun, 29 Oct 1995 22:49:18 -0500
  • Organization: Wolfram Research, Inc.

In article <46n9mt$4cd at ralph.vnet.net>  
hans.steffani at e-technik.tu-chemnitz.de (Hans Steffani) writes:
> In[5]:= (1.  t^3 + 2 t^5) / ( t^2 ( 3 + 4 t^2) )
> 
>             3      5
>         1. t  + 2 t
> Out[5]= -------------
>          2         2
>         t  (3 + 4 t )
> 
> In[6]:= Simplify[%]
> 
>             3      5
>         1. t  + 2 t
> Out[6]= ------------
>            2      4
>         3 t  + 4 t
> 
> 
> How can I make mathematica calculating
> 
> In[11]:= Simplify[Numerator[Out[6]]/t^2] /   
Simplify[Denominator[Out[6]]/t^2]
> 
>                    3
>          1. t + 2 t
> Out[11]= -----------
>                  2
>           3 + 4 t
> 
> 
> Hans Friedrich Steffani
> --
> Hans Friedrich Steffani
> Institut fuer Elektrische Maschinen und Antriebe
> TU Chemnitz-Zwickau
> e-mail: hans.steffani at e-technik.tu-chemnitz.de
> 


  You might try something like this:

In[4]:= Together[Rationalize[(1.  t^3 + 2 t^5) / ( t^2 ( 3 + 4 t^2)  
)]]//InputForm

Out[4]//InputForm= (t*(1 + 2*t^2))/(3 + 4*t^2)

In general, the presence of inexact numbers will confound Simplify,  
Together, et al.

  Daniel Lichtblau
  Wolfram Research
  danl at wri.com



  • Prev by Date: Mma & Win95
  • Next by Date: Q on COMBINING PLOTS w/ diff. axes.
  • Previous by thread: Mma & Win95
  • Next by thread: Q on COMBINING PLOTS w/ diff. axes.