Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1995
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1995

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Help in defining nearly orderless function

  • To: mathgroup at christensen.cybernetics.net
  • Subject: [mg1981] Re: Help in defining nearly orderless function
  • From: Roman Maeder <maeder at inf.ethz.ch>
  • Date: Mon, 4 Sep 1995 22:21:59 -0400
  • Organization: Computer Science, ETH Zurich

Vlad.Fridkin at manuel.anu.edu.au said:
> On the up and up in mathematica I got stuck  with trying to define a 
> function 

> f[a,b,c,d]

> that satisfies the symmetries:

> f[a,b,c,d] = f[b,a,c,d]

> and

> f[a,b,c,d] = f[a,b,d,c] 


Such symmetries are best realized with conditional rules:

In[1]:= f[a_, b_, c_, d_] /; !OrderedQ[{a, b}] := f[b, a, c, d]

In[2]:= f[a_, b_, c_, d_] /; !OrderedQ[{c, d}] := f[a, b, d, c]


In[4]:= f[x, y, u, v] - f[y, x, v, u]

Out[4]= 0

----
Roman Maeder
Theoretical Computer Science
ETH Zentrum, IFW
8092 Zurich
Switzerland




  • Prev by Date: Re: Question: how to get Sin[n*Pi]=0 (n integer)
  • Next by Date: WordPerfect
  • Previous by thread: Re: Question: how to get Sin[n*Pi]=0 (n integer)
  • Next by thread: WordPerfect