MathGroup Archive 1995

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Help in defining nearly orderless function


Vlad.Fridkin at manuel.anu.edu.au said:
> On the up and up in mathematica I got stuck  with trying to define a 
> function 

> f[a,b,c,d]

> that satisfies the symmetries:

> f[a,b,c,d] = f[b,a,c,d]

> and

> f[a,b,c,d] = f[a,b,d,c] 


Such symmetries are best realized with conditional rules:

In[1]:= f[a_, b_, c_, d_] /; !OrderedQ[{a, b}] := f[b, a, c, d]

In[2]:= f[a_, b_, c_, d_] /; !OrderedQ[{c, d}] := f[a, b, d, c]


In[4]:= f[x, y, u, v] - f[y, x, v, u]

Out[4]= 0

----
Roman Maeder
Theoretical Computer Science
ETH Zentrum, IFW
8092 Zurich
Switzerland




  • Prev by Date: Re: Question: how to get Sin[n*Pi]=0 (n integer)
  • Next by Date: WordPerfect
  • Previous by thread: Re: Question: how to get Sin[n*Pi]=0 (n integer)
  • Next by thread: WordPerfect