Re: Horner scheme function ?
- To: mathgroup at smc.vnet.net
- Subject: [mg4492] Re: [mg4414] Horner scheme function ?
- From: brucec (Bruce Carpenter)
- Date: Fri, 2 Aug 1996 02:22:24 -0400
- Sender: owner-wri-mathgroup at wolfram.com
At 10:49 PM 7/21/96, Manfred Krafczyk wrote: >Hi all, >does anybody know where I can find a Mathematica >function that returns the Horner representation >of a polynomial or how such a function could be >constructed from the standard M. function set ? > >Any hints welcome, >thanks in advance >Manfred Krafczyk >kraft at busch.bauwesen.uni-dortmund.de Hi Manfred, Take a look at the following: In[45]:= Hornerize[poly_,var_] := Fold[(#1 x + #2)&,0,Reverse[CoefficientList[poly,var]]] In[46]:= Hornerize[3 x^6 + 4 x^5 - x^4 + 27 x^3 - x + 1, x] Out[46]= 1 + x*(-1 + x^2*(27 + x*(-1 + x*(4 + 3*x)))) In[47]:= Hornerize[-c x^2 + b x^5, x] Out[47]= x^2*(-c + b*x^3) Cheers, Bruce Carpenter ----------------------- Dr. Bruce Carpenter Educational Applications Coordinator phone: (217) 398-0700 Wolfram Research, Inc. fax: (217) 398-0747 100 Trade Centre Drive email: brucec at wolfram.com Champaign, IL 61820 web: http://www.wolfram.com ==== [MESSAGE SEPARATOR] ====