Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1996
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1996

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Horner scheme function ?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg4492] Re: [mg4414] Horner scheme function ?
  • From: brucec (Bruce Carpenter)
  • Date: Fri, 2 Aug 1996 02:22:24 -0400
  • Sender: owner-wri-mathgroup at wolfram.com

At 10:49 PM 7/21/96, Manfred Krafczyk wrote:
>Hi all,
>does anybody know where I can find a Mathematica
>function that returns the Horner representation
>of a polynomial or how such a function could be
>constructed from the standard M. function set ?
>
>Any hints welcome,
>thanks in advance
>Manfred Krafczyk
>kraft at busch.bauwesen.uni-dortmund.de

Hi Manfred,

Take a look at the following:

In[45]:=
Hornerize[poly_,var_] := Fold[(#1 x + #2)&,0,Reverse[CoefficientList[poly,var]]]

In[46]:=
Hornerize[3 x^6 + 4 x^5 - x^4 + 27 x^3 - x + 1, x]

Out[46]=
1 + x*(-1 + x^2*(27 + x*(-1 + x*(4 + 3*x))))

In[47]:=
Hornerize[-c x^2 + b x^5, x]

Out[47]=
x^2*(-c + b*x^3)

Cheers,
Bruce Carpenter

-----------------------
Dr. Bruce Carpenter
Educational Applications Coordinator         phone: (217) 398-0700
Wolfram Research, Inc.                         fax: (217) 398-0747
100 Trade Centre Drive                       email: brucec at wolfram.com
Champaign, IL  61820                           web:  http://www.wolfram.com



==== [MESSAGE SEPARATOR] ====


  • Prev by Date: Re: Constrained Min, non-linear
  • Next by Date: Re: reverse an axis
  • Previous by thread: Re: Constrained Min, non-linear
  • Next by thread: Re: Horner scheme function ?