Q:Nicer than: Function[x,MapAt[Im,x,2]]/@data
- To: mathgroup at smc.vnet.net
- Subject: [mg5466] [mg5389] Q:Nicer than: Function[x,MapAt[Im,x,2]]/@data
- From: Allan Hayes <hay at haystack>
- Date: Sat, 7 Dec 1996 00:26:47 -0500
- Sender: owner-wri-mathgroup at wolfram.com
rommel at bc.edu [mg5389] Q:Nicer than: Function[x,MapAt[Im,x,2]]/@data writes >>>>>> I want to ListPlot the imaginary part of data: data={{x0,z0},{x1,z1},{x2,z2}} The x? are real, the z? complex. My simple but ugly solution was Transpose[{Transpose[data][[1]],Im[Transpose[data][[2]]]}] after reading a little I came to the shorter Function[x,MapAt[Im,x,2]]/@data Is there a nicer way to do it? <<<<<< Some Experiments: lst = Table[{Random[],Random[]+I Random[]},{2000}]; Function[x,MapAt[Im,x,2]]/@lst;//Timing (*your "shorter" one*) {1.25 Second, Null} MapAt[Im,#,2]&/@lst;//Timing (*faster function*) {0.7 Second, Null} Apply[{#,Im[#2]}&,lst,1];//Timing (*use Apply*) {0.466667 Second, Null} lst/.Complex[x_,y_]:>y;//Timing (*pattern matching*) {0.483333 Second, Null} lst/.{a_,Complex[x_,y_]}:>{a,y};//Timing (*help matching*) {0.383333 Second, Null} MapAt[Im,Transpose[lst],{2}]//Transpose;//Timing (*your "ugly" one*) {0.3 Second, Null} MapAt[Im,Thread[lst],{2}]//Thread;//Timing (*Thread faster than Transpose*) {0.25 Second, Null} Allan Hayes hay at haystack.demon.co.uk http://www.haystack.demon.co.uk