Re: Sinusoidal Nonlinear Fit
- To: mathgroup at smc.vnet.net
- Subject: [mg7887] Re: Sinusoidal Nonlinear Fit
- From: Mark Evans <evans at gte.net>
- Date: Thu, 17 Jul 1997 15:35:48 -0400
- Organization: None
- Sender: owner-wri-mathgroup at wolfram.com
Mark Evans wrote: > > I am foiled by NonlinearFit.... I found the magic command for getting a good fit based on trigonometric functions: <<NumericalMath`TrigFit` fit = Chop[TrigFit[Flatten[Take[Transpose[passive4],{2}]], 5, {t, 3.45, 13.45}]] The book says that this TrigFit uses Fourier components directly, which is essentially what I wanted. I can use the trig function with the largest coefficient as the best-fit sinusoid. I am still puzzled why NonlinearFit could not do this job. Here again is the data if you missed it in the first message. Is this considered a "bug" in NonlinearFit? Or is NonlinearFit not supposed to handle periodic functions? -- Mark passive4 = {{3.45, 634.765625}, {3.5, 622.5585937}, {3.55, 639.6484375}, {3.5999999, 603.0273437}, {3.6500001, 649.4140625}, {3.7, 654.296875}, {3.75, 690.9179687}, {3.8, 678.7109375}, {3.8499999, 712.890625}, {3.9000001, 751.953125}, {3.95, 839.84375}, {4., 849.609375}, {4.0500002, 949.7070312}, {4.0999999, 917.96875}, {4.1500001, 1022.949219}, {4.1999998, 974.1210937}, {4.25, 1076.660156}, {4.3000002, 1003.417969}, {4.3499999, 1096.191406}, {4.4000001, 1064.453125}, {4.4499998, 1105.957031}, {4.5, 1088.867188}, {4.5500002, 1101.074219}, {4.5999999, 1105.957031}, {4.6500001, 1098.632813}, {4.6999998, 1120.605469}, {4.75, 1091.308594}, {4.8000002, 1127.929688}, {4.8499999, 1096.191406}, {4.9000001, 1123.046875}, {4.9499998, 1081.542969}, {5., 1118.164063}, {5.0500002, 1081.542969}, {5.0999999, 1127.929688}, {5.1500001, 1086.425781}, {5.1999998, 1130.371094}, {5.25, 1076.660156}, {5.3000002, 1132.8125}, {5.3499999, 1083.984375}, {5.4000001, 1147.460938}, {5.4499998, 1066.894531}, {5.5, 1118.164063}, {5.5500002, 998.5351562}, {5.5999999, 1047.363281}, {5.6500001, 949.7070312}, {5.6999998, 1000.976563}, {5.75, 910.6445312}, {5.8000002, 947.265625}, {5.8499999, 883.7890625}, {5.9000001, 908.203125}, {5.9499998, 852.0507812}, {6., 866.6992187}, {6.0500002, 793.4570312}, {6.0999999, 781.25}, {6.1500001, 717.7734375}, {6.1999998, 690.9179687}, {6.25, 651.8554687}, {6.3000002, 620.1171875}, {6.3499999, 563.9648437}, {6.4000001, 537.109375}, {6.4499998, 502.9296875}, {6.5, 461.4257812}, {6.5500002, 446.7773437}, {6.5999999, 397.9492187}, {6.6500001, 397.9492187}, {6.6999998, 351.5625}, {6.75, 334.4726562}, {6.8000002, 305.1757812}, {6.8499999, 283.203125}, {6.9000001, 285.6445312}, {6.9499998, 278.3203125}, {7., 261.2304687}, {7.0500002, 246.5820312}, {7.0999999, 178.2226562}, {7.1500001, 200.1953125}, {7.1999998, 190.4296875}, {7.25, 153.8085937}, {7.3000002, 180.6640625}, {7.3499999, 197.7539062}, {7.4000001, 183.1054687}, {7.4499998, 166.015625}, {7.5, 197.7539062}, {7.5500002, 153.8085937}, {7.5999999, 168.4570312}, {7.6500001, 200.1953125}, {7.6999998, 200.1953125}, {7.75, 190.4296875}, {7.8000002, 190.4296875}, {7.8499999, 251.4648437}, {7.9000001, 207.5195312}, {7.9499998, 270.9960937}, {8., 241.6992187}, {8.0500002, 275.8789062}, {8.1000004, 341.796875}, {8.1499996, 400.390625}, {8.1999998, 434.5703125}, {8.25, 478.515625}, {8.3000002, 515.1367187}, {8.3500004, 527.34375}, {8.3999996, 573.7304687}, {8.4499998, 603.0273437}, {8.5, 649.4140625}, {8.5500002, 649.4140625}, {8.6000004, 708.0078125}, {8.6499996, 705.5664062}, {8.6999998, 771.484375}, {8.75, 756.8359375}, {8.8000002, 827.6367187}, {8.8500004, 803.2226562}, {8.8999996, 883.7890625}, {8.9499998, 852.0507812}, {9., 944.8242187}, {9.0500002, 903.3203125}, {9.1000004, 988.7695312}, {9.1499996, 952.1484375}, {9.1999998, 1022.949219}, {9.25, 1000.976563}, {9.3000002, 1059.570313}, {9.3500004, 1037.597656}, {9.3999996, 1049.804688}, {9.4499998, 1071.777344}, {9.5, 1032.714844}, {9.5500002, 1059.570313}, {9.6000004, 1052.246094}, {9.6499996, 1066.894531}, {9.6999998, 1013.183594}, {9.75, 1074.21875}, {9.8000002, 1015.625}, {9.8500004, 1054.6875}, {9.8999996, 996.09375}, {9.9499998, 1059.570313}, {10., 996.09375}, {10.0500002, 1054.6875}, {10.1000004, 966.796875}, {10.1499996, 1010.742188}, {10.1999998, 908.203125}, {10.25, 937.5}, {10.3000002, 849.609375}, {10.3500004, 900.8789062}, {10.3999996, 817.8710937}, {10.4499998, 864.2578125}, {10.5, 783.6914062}, {10.5500002, 803.2226562}, {10.6000004, 732.421875}, {10.6499996, 751.953125}, {10.6999998, 690.9179687}, {10.75, 683.59375}, {10.8000002, 627.4414062}, {10.8500004, 622.5585937}, {10.8999996, 568.8476562}, {10.9499998, 551.7578125}, {11., 529.7851562}, {11.0500002, 500.4882812}, {11.1000004, 468.75}, {11.1499996, 446.7773437}, {11.1999998, 424.8046875}, {11.25, 383.3007812}, {11.3000002, 390.625}, {11.3500004, 341.796875}, {11.3999996, 334.4726562}, {11.4499998, 314.9414062}, {11.5, 302.734375}, {11.5500002, 273.4375}, {11.6000004, 256.3476562}, {11.6499996, 246.5820312}, {11.6999998, 251.4648437}, {11.75, 224.609375}, {11.8000002, 224.609375}, {11.8500004, 195.3125}, {11.8999996, 163.5742187}, {11.9499998, 141.6015625}, {12., 151.3671875}, {12.0500002, 178.2226562}, {12.1000004, 190.4296875}, {12.1499996, 173.3398437}, {12.1999998, 175.78125}, {12.25, 139.1601562}, {12.3000002, 195.3125}, {12.3500004, 156.25}, {12.3999996, 217.2851562}, {12.4499998, 222.1679687}, {12.5, 256.3476562}, {12.5500002, 244.140625}, {12.6000004, 258.7890625}, {12.6499996, 273.4375}, {12.6999998, 346.6796875}, {12.75, 375.9765625}, {12.8000002, 400.390625}, {12.8500004, 429.6875}, {12.8999996, 441.8945312}, {12.9499998, 490.7226562}, {13., 490.7226562}, {13.0500002, 517.578125}, {13.1000004, 505.3710937}, {13.1499996, 541.9921875}, {13.1999998, 527.34375}, {13.25, 546.875}, {13.3000002, 527.34375}, {13.3500004, 556.640625}, {13.3999996, 515.1367187}, {13.4499998, 559.0820312}};