Re: What is wrong?
- To: mathgroup at smc.vnet.net
- Subject: [mg7704] Re: What is wrong?
- From: Marc Mazzariol <Marc.Mazzariol at di.epfl.ch>
- Date: Wed, 2 Jul 1997 14:21:24 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Sergio Rojas wrote: > > In[1]:= Integrate[x*Sin[x]/(x^2+1),{x,0,Infinity}] > > Pi > Out[1]= --- > 2 E > > In[2]:= f[x_] = Evaluate[ Integrate[x*Sin[x]/(x^2+1),x]] ; > > In[3]:= ans = f[Infinity] - f[0] > > E Pi > Out[3]= ---- > 2 > > In[4]:= $Version > > Out[4]= DEC OSF/1 Alpha 2.2 (September 9, 1994) > > sergio > > E-mail: sergio at scisun.sci.ccny.cuny.edu I don't know, but in the new version of Mathematica it seems to work : In[23]:= Integrate[x Sin[x]/(x^2+1),{x,0,Infinity}] Out[23]= Sqrt[Pi/2]*BesselK[1/2, 1] In[24]:= N[%] == Pi/(2 E) Out[24]= True In[25]:= f[x_] = Evaluate[Integrate[x*Sin[x]/(x^2 + 1), x]] Out[25]= 1/2*(I*CosIntegral[-I + x]*Sinh[1] - I*CosIntegral[I + x]*Sinh[1] + Cosh[1]*SinIntegral[-I + x] + Cosh[1]*SinIntegral[I + x]) In[26]:= f[Infinity] - f[0] Out[26]= 1/2*Pi*Cosh[1] + 1/2*(-I*CosIntegral[-I]*Sinh[1] + I*CosIntegral[I]*Sinh[1] - Cosh[1]*SinIntegral[-I] - Cosh[1]*SinIntegral[I]) In[27]:= N[%] == Pi/(2 E) Out[27]= True In[28]:= $Version Out[28]= "Microsoft Windows 3.0 (October 6, 1996)" In an older version I've the same problem as you, maybe the difference lies in how Mathematica interpretes In[25] (I'm not sure) : In[24]:= $Version Out[24]= SPARC 2.2 (June 14, 1994) In[25]:= f[x_] = Evaluate[ Integrate[x*Sin[x]/(x^2+1),x]] 2 Out[25]= (-I CosIntegral[I - x] + I E CosIntegral[I - x] + 2 I CosIntegral[I + x] - I E CosIntegral[I + x] - SinIntegral[I - x] - 2 2 E SinIntegral[I - x] + SinIntegral[I + x] + E SinIntegral[I + x])/ (4 E) -- +--------------------------------------------------------+ | - No brain, no headache - | +--------------------------------------------------------+ | Marc Mazzariol | | Swiss Federal Institute of Technology (EPFL) | | Peripheral Systems Laboratory (LSP) | | CH-1015 Lausanne, Switzerland | | Tel: +41 21 693 3944 | | Fax: +41 21 693 6680 | | E-mail: Marc.Mazzariol at di.epfl.ch | +--------------------------------------------------------+