Re: Re: Error in integrals?
- To: mathgroup at smc.vnet.net
- Subject: [mg9532] Re: [mg9502] Re: Error in integrals?
- From: David Withoff <withoff>
- Date: Thu, 13 Nov 1997 01:39:59 -0500
- Sender: owner-wri-mathgroup at wolfram.com
: Mathematica 3.0 on a PowerMac 7200/90 88MB Mac OS 8 gives different : results for Integrate vs. NIntegrate. : Here is one example. : ior[m_] := 1/3*(2*Sqrt[3]*Sqrt[(-1 + m^2)^2/(1 + m^2)^4] + : Sqrt[(Sqrt[3] - 6*m - Sqrt[3]*m^2)^2/(1 + m^2)^4] + Sqrt[(Sqrt[3] + : 6*m - Sqrt[3]*m^2)^2/(1 + m^2)^4]) : In[31]:= : N[Integrate[ior[m],{m,0,1}]] : Out[31]= : -0.42265 > I tried your example in Mathematica 2.2: > > In[12]:= In[12]:= N[Integrate[ior[m],{m,0,1}]] > > General::intinit: Loading integration packages -- please wait. > > Out[12]= 1.73206 > > In[13]:= NIntegrate[ior[m],{m,0,1}] > > Out[13]= 1.73206 > > In[14]:= In[14]:= $Version > > Out[14]= DEC OSF/1 Alpha 2.2 (September 9, 1994) > > Sergio The Integrate function in Version 2.2 gives the "right" answer here because it didn't do the integral. N[Integrate[ior[m],{m,0,1}]] and NIntegrate[ior[m],{m,0,1}] give the same answer in Version 2.2 because both calculations are done using NIntegrate. When N is applied to an unevaluated integral, Mathematica automatically calls NIntegrate. Integrate[ior[m],{m,0,1}] in Version 2.2 returns the integral unevaluated. Dave Withoff Wolfram Research