Integrate and Solve
- To: mathgroup at smc.vnet.net
- Subject: [mg9723] Integrate and Solve
- From: Ed Hall <teh1m at holmes.acc.virginia.edu>
- Date: Tue, 25 Nov 1997 00:06:18 -0500
- Organization: uva
- Sender: owner-wri-mathgroup at wolfram.com
Folks, I was hoping someone might have some insight into the reasons for the following error messages I receiving using the Integrate and Solve commands. I sent these questions to Wolfram Technical Support some time ago but have not received a reply. ------------------------------------------------------------- The first problem involves the following integral. P=R*T/(V/m-b)-a/((V/m)^2+2*b*V/m-b^2); Z=P*V/(m*R*T); F=Integrate[(Z-1)*m/V,{V,0.1,Infinity}]; I get the error message, In[5]:= F=Integrate[(Z-1)*m/V,{V,0.1,Infinity}] Integrate::gener: Unable to check convergence 0.0707107 0.707107 a ArcTanh[0.707107 + ---------] b m Out[5]= -(m (2.30259 + ---------------------------------------- + b R T > 1. Log[0.1 - b m])) - 1 a m Pi Sign[b] Sqrt[-(-----------------)] Sign[m] 2 2 Sign[b] Sign[m] > ------------------------------------------------- 2 Sqrt[2] b R T although when the upper limit is any real number, no error is generated, e.g. In[4]:= F=Integrate[(Z-1)*m/V,{V,0.1, 1.0 10^40}] 0.0707107 0.707107 a ArcTanh[0.707107 + ---------] b m Out[4]= -(m (2.30259 + ---------------------------------------- + b R T > 1. Log[0.1 - b m])) + 39 7.07107 10 0.707107 a ArcTanh[0.707107 + ------------] b m > m (-92.1034 + ------------------------------------------- + b R T 40 > 1. Log[1. 10 - b m]) What are the general conditions under which the failure to test convergence message is generated for the Integrate function? ------------------------------------------------------------- The second problem involves the Solve function in the following way. In[12]:= g1=2.0; In[13]:= g2=2.0; In[14]:= x1=2.0; In[15]:= Solve[{Log[g1]==-Log[x1+A*(1-x1)]+(1-x1)*(A/(x1+A*(1-x1))-B/(B*x1+(1-x1))),Log[g 2]==-Log[1-x1+B*x1]-x1*(A/(x1+A*(1-x1))-B/(B*x1+(1-x1)))},{A,B}] -2. B Solve::dinv: The expression (2. - 1. A) involves unknowns in more than one argument, so inverse functions cannot be used. A B Out[15]= Solve[{0.693147 == -1. (--------- - ----------) - Log[2. - 1. A], 2. - 1. A -1. + 2. B A B > Log[2 g] == -2. (--------- - ----------) - Log[-1. + 2. B]}, {A, B}] 2. - 1. A -1. + 2. B Do you have any suggestions on how I might solve this pair of equations? --------------------------------------------------------------------- Thanks in advance for any help. Ed -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ed Hall Research Computing Support edhall at virginia.edu Information Technology and Communication 804-924-0620 The University Virginia