Re: Interpolatingfunction
- To: mathgroup at smc.vnet.net
- Subject: [mg9760] Re: [mg9712] Interpolatingfunction
- From: Allan Hayes <hay at haystack.demon.co.uk>
- Date: Tue, 25 Nov 1997 00:07:08 -0500
- Mmdf-warning: Parse error in original version of preceding line at post.mail.demon.net
- Sender: owner-wri-mathgroup at wolfram.com
[mg9712] Interpolatingfunction From: Tama's Kalma'r-Nagy, tk43 at cornell.edu To: mathgroup at smc.vnet.net >I have two InterpolatingFunction objects (f1,f2) on the same interval. I >would like to get a third one which is Min(f1,f2). Any idea would be >appreciated. Tama: FunctionInterpolation is one way Suppose f1= Interpolation[{{1,2},{1.5,1},{2.3,3}, {3,1}}]; f2= Interpolation[{{1,1},{1.9,2},{2.7,1}, {3,2}}]; Then get fmin =FunctionInterpolation[Min[f1[x],f2[x]], {x,1,3}]; Compare Plot[{f1[x],f2[x], fmin[x]},{x,1,3}, PlotStyle -> {Hue[0],Hue[.35],Hue[.7]}]; For a closer fit we can use more points: fmin2 =FunctionInterpolation[Min[f1[x],f2[x]], {x,1,3}, InterpolationPoints-> 55]; Plot[{f1[x],f2[x], fmin2[x]},{x,1,3}, PlotStyle -> {Hue[0],Hue[.35],Hue[.7]}]; Allan Hayes hay at haystack.demon.co.uk http://www.haystack.demon.co.uk voice: +44 (0)116 271 4198 fax: +44 (0)116 271 8642