Debug program
- To: mathgroup@smc.vnet.net
- Subject: [mg10866] Debug program
- From: Chik Tai Wai David <h9505865@hkusua.hku.hk>
- Date: Wed, 11 Feb 1998 18:32:35 -0500
- Organization: HKU
Dear, I am using mathematica to write a program that solves a differential equation by finite difference method ( one of numerical methods ). I use Table[] to generate a set of linear equations and try to use Table[Solve[]] to solve for the unknowns. But an error message of something like "general::ivar:X[1],X[2],X[3] is not an valid variable" appears. I don't know what is wrong so would any one can do me a favor ? My program file is attached as "trial.nb". Just read the last cell first to see my problem. Thank you very much ! Regards, David Chik. (email:h9505865@hkusua.hku.hk)
(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 31155, 691]*) (*NotebookOutlinePosition[ 31803, 714]*) (* CellTagsIndexPosition[ 31759, 710]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ StyleBox[\(\ Use\ Finite\ Difference\ Method\ to\ model\ the\ heat\ conduction\ inside\ the\ \(Earth . \)\), FontSize->18, FontColor->RGBColor[0, 0, 1]]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ StyleBox[ \( (*\ \(' eq'\ is\ the\ differential\ equation\ I\ want\ to\ solve \), \n\tTemp\ is\ a\ function\ of\ space\ r\ and\ time\ \(t . \)\ *) \), FontColor->RGBColor[0, 0, 1]], "\n", RowBox[{"eq", "=", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["Temp", TagBox[\((0, 1)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}], \(d[r, t]\)], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["Temp", TagBox[\((1, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}]}], \(r + 1\)], "-", RowBox[{ SuperscriptBox["Temp", TagBox[\((2, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}]}], "==", \(g[r, t]\/k[r, t]\)}]}]}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["Temp", TagBox[\((0, 1)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}], \(d[r, t]\)], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["Temp", TagBox[\((1, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}]}], \(1 + r\)], "-", RowBox[{ SuperscriptBox["Temp", TagBox[\((2, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}]}], "==", \(g[r, t]\/k[r, t]\)}]], "Output"] }, Open ]], Cell[BoxData[ StyleBox[ \( (*\ ' fdeq'\ transform\ ' eq'\ to\ finite\ difference\ form\ *) \), FontColor->RGBColor[0, 0, 1]]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"fdeq", "=", RowBox[{"Simplify", "[", "\n", "\t\t\t\t\t\t ", RowBox[{"eq", "/.", " ", RowBox[{"{", " ", RowBox[{ \(r -> r[i]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(t -> t[j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(Temp[r, t] -> Temp[i, j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(d[r, t] -> d[i, j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(g[r, t] -> g[i, j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(k[r, t] -> k[i, j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", RowBox[{ RowBox[{ SuperscriptBox["Temp", TagBox[\((2, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}], "->", \(\((Temp[i - 1, j + 1] - 2*Temp[i, j + 1] + Temp[i + 1, j + 1] + Temp[i - 1, j] - 2*Temp[i, j] + Temp[i + 1, j])\)/\((2*\[Alpha]*\[Alpha])\)\)}], ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t ", RowBox[{ RowBox[{ SuperscriptBox["Temp", TagBox[\((1, 0)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}], "->", \(\((Temp[i + 1, j] + Temp[i + 1, j + 1] - Temp[i - 1, j] - Temp[i - 1, j + 1])\)/\((4*\[Alpha])\)\)}], ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", RowBox[{ RowBox[{ SuperscriptBox["Temp", TagBox[\((0, 1)\), Derivative], MultilineFunction->None], "[", \(r, t\), "]"}], "->", \(\((Temp[i, j + 1] - Temp[i, j])\)/\[Beta]\)}]}], "}"}]}], "]"}]}]], "Input"], Cell[BoxData[ \(\(\(-Temp[i, j]\) + Temp[i, 1 + j]\)\/\(\[Beta]\ d[i, j]\) + \(1\/\(2\ \[Alpha] + 2\ \[Alpha]\ r[i]\)\(( Temp[\(-1\) + i, j] + Temp[\(-1\) + i, 1 + j] - Temp[1 + i, j] - Temp[1 + i, 1 + j])\)\) - \(1\/\(2\ \[Alpha]\^2\)\(( Temp[\(-1\) + i, j] + Temp[\(-1\) + i, 1 + j] - 2\ Temp[i, j] - 2\ Temp[i, 1 + j] + Temp[1 + i, j] + Temp[1 + i, 1 + j])\)\) == g[i, j]\/k[i, j]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ StyleBox[ \( (*\ This\ shows\ the\ values\ of\ the\ parameters\ in\ the\ equation\ *) \), FontColor->RGBColor[0, 0, 1]], "\n", \(parameters = {\nTable[g[i, j] -> 3.88*^-8, {i, 0, 6}, {j, 0, 4}], \n Table[d[i, j] -> Which[i > 5, 1.2*^-6, i > 3, 4.*^-6, True, 6.5*^-6], {i, 0, 6}, {j, 0, 4}], \n Table[k[i, j] -> Which[i > 5, 4. , i > 3, 45. , True, 67. ], {i, 0, 6}, {j, 0, 4}]} // Flatten\)}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ \(g[0, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[0, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[0, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[0, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[0, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[1, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[1, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[1, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[1, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[1, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[2, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[2, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[2, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[2, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[2, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[3, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[3, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[3, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[3, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[3, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[4, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[4, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[4, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[4, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[4, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[5, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[5, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[5, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[5, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[5, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[6, 0] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[6, 1] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[6, 2] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[6, 3] \[Rule] 3.87999999999999989`*^-8\), ",", \(g[6, 4] \[Rule] 3.87999999999999989`*^-8\), ",", \(d[0, 0] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[0, 1] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[0, 2] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[0, 3] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[0, 4] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[1, 0] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[1, 1] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[1, 2] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[1, 3] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[1, 4] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[2, 0] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[2, 1] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[2, 2] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[2, 3] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[2, 4] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[3, 0] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[3, 1] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[3, 2] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[3, 3] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[3, 4] \[Rule] 6.49999999999999911`*^-6\), ",", \(d[4, 0] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[4, 1] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[4, 2] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[4, 3] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[4, 4] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[5, 0] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[5, 1] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[5, 2] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[5, 3] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[5, 4] \[Rule] 3.99999999999999964`*^-6\), ",", \(d[6, 0] \[Rule] 1.19999999999999996`*^-6\), ",", \(d[6, 1] \[Rule] 1.19999999999999996`*^-6\), ",", \(d[6, 2] \[Rule] 1.19999999999999996`*^-6\), ",", \(d[6, 3] \[Rule] 1.19999999999999996`*^-6\), ",", \(d[6, 4] \[Rule] 1.19999999999999996`*^-6\), ",", RowBox[{\(k[0, 0]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[0, 1]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[0, 2]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[0, 3]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[0, 4]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[1, 0]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[1, 1]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[1, 2]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[1, 3]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[1, 4]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[2, 0]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[2, 1]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[2, 2]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[2, 3]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[2, 4]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[3, 0]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[3, 1]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[3, 2]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[3, 3]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[3, 4]\), "\[Rule]", StyleBox["67.0000000000000017`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[4, 0]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[4, 1]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[4, 2]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[4, 3]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[4, 4]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[5, 0]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[5, 1]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[5, 2]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[5, 3]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[5, 4]\), "\[Rule]", StyleBox["45.`", StyleBoxAutoDelete->True, PrintPrecision->2]}], ",", RowBox[{\(k[6, 0]\), "\[Rule]", StyleBox["4.`", StyleBoxAutoDelete->True, PrintPrecision->1]}], ",", RowBox[{\(k[6, 1]\), "\[Rule]", StyleBox["4.`", StyleBoxAutoDelete->True, PrintPrecision->1]}], ",", RowBox[{\(k[6, 2]\), "\[Rule]", StyleBox["4.`", StyleBoxAutoDelete->True, PrintPrecision->1]}], ",", RowBox[{\(k[6, 3]\), "\[Rule]", StyleBox["4.`", StyleBoxAutoDelete->True, PrintPrecision->1]}], ",", RowBox[{\(k[6, 4]\), "\[Rule]", StyleBox["4.`", StyleBoxAutoDelete->True, PrintPrecision->1]}]}], "}"}]], "Output"] }, Open ]], Cell[BoxData[ StyleBox[\( (*\ This\ is\ the\ space - time\ grid\ *) \), FontColor->RGBColor[0, 0, 1]]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\[Alpha] = 1274200; \[Beta] = 2*^16\ ; \n grid = Table[{r[i], t[j]} -> {i*\[Alpha], j*\[Beta]}, {i, 0, 6}, {j, 0, 4}] // Flatten\)], "Input"], Cell[BoxData[ \({{r[0], t[0]} \[Rule] {0, 0}, {r[0], t[1]} \[Rule] {0, 20000000000000000}, {r[0], t[2]} \[Rule] {0, 40000000000000000}, {r[0], t[3]} \[Rule] {0, 60000000000000000}, {r[0], t[4]} \[Rule] {0, 80000000000000000}, {r[1], t[0]} \[Rule] {1274200, 0}, {r[1], t[1]} \[Rule] {1274200, 20000000000000000}, {r[1], t[2]} \[Rule] {1274200, 40000000000000000}, {r[1], t[3]} \[Rule] {1274200, 60000000000000000}, {r[1], t[4]} \[Rule] {1274200, 80000000000000000}, {r[2], t[0]} \[Rule] {2548400, 0}, {r[2], t[1]} \[Rule] {2548400, 20000000000000000}, {r[2], t[2]} \[Rule] {2548400, 40000000000000000}, {r[2], t[3]} \[Rule] {2548400, 60000000000000000}, {r[2], t[4]} \[Rule] {2548400, 80000000000000000}, {r[3], t[0]} \[Rule] {3822600, 0}, {r[3], t[1]} \[Rule] {3822600, 20000000000000000}, {r[3], t[2]} \[Rule] {3822600, 40000000000000000}, {r[3], t[3]} \[Rule] {3822600, 60000000000000000}, {r[3], t[4]} \[Rule] {3822600, 80000000000000000}, {r[4], t[0]} \[Rule] {5096800, 0}, {r[4], t[1]} \[Rule] {5096800, 20000000000000000}, {r[4], t[2]} \[Rule] {5096800, 40000000000000000}, {r[4], t[3]} \[Rule] {5096800, 60000000000000000}, {r[4], t[4]} \[Rule] {5096800, 80000000000000000}, {r[5], t[0]} \[Rule] {6371000, 0}, {r[5], t[1]} \[Rule] {6371000, 20000000000000000}, {r[5], t[2]} \[Rule] {6371000, 40000000000000000}, {r[5], t[3]} \[Rule] {6371000, 60000000000000000}, {r[5], t[4]} \[Rule] {6371000, 80000000000000000}, {r[6], t[0]} \[Rule] {7645200, 0}, {r[6], t[1]} \[Rule] {7645200, 20000000000000000}, {r[6], t[2]} \[Rule] {7645200, 40000000000000000}, {r[6], t[3]} \[Rule] {7645200, 60000000000000000}, {r[6], t[4]} \[Rule] {7645200, 80000000000000000}}\)], "Output"] }, Open ]], Cell[BoxData[ StyleBox[ \( (*\ Now\ I\ try\ to\ generate\ the\ set\ of\ algebraic\ equations . \ I\ put\ the\ boundary\ conditions\ inside\ \(also . \)\ *) \), FontColor->RGBColor[0, 0, 1]]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(eqns = { \({Table[fdeq /. {i -> a, j -> b}, {a, 1, 5}, {b, 0, 3}], Table[Temp[i, j] - Temp[i, j - 1] == \(-40\) /. {i -> a, j -> b}, {a, 6, 6}, {b, 1, 4}], \n Table[Temp[i, j - 1] - \((\((\((1 + 6*0.0400348453439142204`)\)*Temp[i, j] - 6*0.0400348453439142204`*Temp[i + 1, j] - 6*0.0400348453439142204`*Temp[i + 1, j - 1] - d[i, j - 1]*g[i, j - 1]*\[Beta]/k[i, j - 1]) \)/\((1 - 6*0.0400348453439142204`)\))\) == 0 /. {i -> a, j -> b}, {a, 0, 0}, {b, 1, 4}], Table[Temp[i, j] == 500. /. {i -> a, j -> b}, {a, 0, 6}, {b, 0, 0}]} /. grid\) /. parameters} // Flatten\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ \(7.69230769230769251`*^-12\ \((\(-Temp[1, 0]\) + Temp[1, 1])\) + \(Temp[0, 0] + Temp[0, 1] - Temp[2, 0] - Temp[2, 1]\)\/\(2548400 + 2548400\ r[1]\) + \((\(-Temp[0, 0]\) - Temp[0, 1] + 2\ Temp[1, 0] + 2\ Temp[1, 1] - Temp[2, 0] - Temp[2, 1])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[1, 1]\) + Temp[1, 2])\) + \(Temp[0, 1] + Temp[0, 2] - Temp[2, 1] - Temp[2, 2]\)\/\(2548400 + 2548400\ r[1]\) + \((\(-Temp[0, 1]\) - Temp[0, 2] + 2\ Temp[1, 1] + 2\ Temp[1, 2] - Temp[2, 1] - Temp[2, 2])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[1, 2]\) + Temp[1, 3])\) + \(Temp[0, 2] + Temp[0, 3] - Temp[2, 2] - Temp[2, 3]\)\/\(2548400 + 2548400\ r[1]\) + \((\(-Temp[0, 2]\) - Temp[0, 3] + 2\ Temp[1, 2] + 2\ Temp[1, 3] - Temp[2, 2] - Temp[2, 3])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[1, 3]\) + Temp[1, 4])\) + \(Temp[0, 3] + Temp[0, 4] - Temp[2, 3] - Temp[2, 4]\)\/\(2548400 + 2548400\ r[1]\) + \((\(-Temp[0, 3]\) - Temp[0, 4] + 2\ Temp[1, 3] + 2\ Temp[1, 4] - Temp[2, 3] - Temp[2, 4])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[2, 0]\) + Temp[2, 1])\) + \(Temp[1, 0] + Temp[1, 1] - Temp[3, 0] - Temp[3, 1]\)\/\(2548400 + 2548400\ r[2]\) + \((\(-Temp[1, 0]\) - Temp[1, 1] + 2\ Temp[2, 0] + 2\ Temp[2, 1] - Temp[3, 0] - Temp[3, 1])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[2, 1]\) + Temp[2, 2])\) + \(Temp[1, 1] + Temp[1, 2] - Temp[3, 1] - Temp[3, 2]\)\/\(2548400 + 2548400\ r[2]\) + \((\(-Temp[1, 1]\) - Temp[1, 2] + 2\ Temp[2, 1] + 2\ Temp[2, 2] - Temp[3, 1] - Temp[3, 2])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[2, 2]\) + Temp[2, 3])\) + \(Temp[1, 2] + Temp[1, 3] - Temp[3, 2] - Temp[3, 3]\)\/\(2548400 + 2548400\ r[2]\) + \((\(-Temp[1, 2]\) - Temp[1, 3] + 2\ Temp[2, 2] + 2\ Temp[2, 3] - Temp[3, 2] - Temp[3, 3])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[2, 3]\) + Temp[2, 4])\) + \(Temp[1, 3] + Temp[1, 4] - Temp[3, 3] - Temp[3, 4]\)\/\(2548400 + 2548400\ r[2]\) + \((\(-Temp[1, 3]\) - Temp[1, 4] + 2\ Temp[2, 3] + 2\ Temp[2, 4] - Temp[3, 3] - Temp[3, 4])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[3, 0]\) + Temp[3, 1])\) + \(Temp[2, 0] + Temp[2, 1] - Temp[4, 0] - Temp[4, 1]\)\/\(2548400 + 2548400\ r[3]\) + \((\(-Temp[2, 0]\) - Temp[2, 1] + 2\ Temp[3, 0] + 2\ Temp[3, 1] - Temp[4, 0] - Temp[4, 1])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[3, 1]\) + Temp[3, 2])\) + \(Temp[2, 1] + Temp[2, 2] - Temp[4, 1] - Temp[4, 2]\)\/\(2548400 + 2548400\ r[3]\) + \((\(-Temp[2, 1]\) - Temp[2, 2] + 2\ Temp[3, 1] + 2\ Temp[3, 2] - Temp[4, 1] - Temp[4, 2])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[3, 2]\) + Temp[3, 3])\) + \(Temp[2, 2] + Temp[2, 3] - Temp[4, 2] - Temp[4, 3]\)\/\(2548400 + 2548400\ r[3]\) + \((\(-Temp[2, 2]\) - Temp[2, 3] + 2\ Temp[3, 2] + 2\ Temp[3, 3] - Temp[4, 2] - Temp[4, 3])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(7.69230769230769251`*^-12\ \((\(-Temp[3, 3]\) + Temp[3, 4])\) + \(Temp[2, 3] + Temp[2, 4] - Temp[4, 3] - Temp[4, 4]\)\/\(2548400 + 2548400\ r[3]\) + \((\(-Temp[2, 3]\) - Temp[2, 4] + 2\ Temp[3, 3] + 2\ Temp[3, 4] - Temp[4, 3] - Temp[4, 4])\)/3247171280000 == 5.79104477611940193`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[4, 0]\) + Temp[4, 1])\) + \(Temp[3, 0] + Temp[3, 1] - Temp[5, 0] - Temp[5, 1]\)\/\(2548400 + 2548400\ r[4]\) + \((\(-Temp[3, 0]\) - Temp[3, 1] + 2\ Temp[4, 0] + 2\ Temp[4, 1] - Temp[5, 0] - Temp[5, 1])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[4, 1]\) + Temp[4, 2])\) + \(Temp[3, 1] + Temp[3, 2] - Temp[5, 1] - Temp[5, 2]\)\/\(2548400 + 2548400\ r[4]\) + \((\(-Temp[3, 1]\) - Temp[3, 2] + 2\ Temp[4, 1] + 2\ Temp[4, 2] - Temp[5, 1] - Temp[5, 2])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[4, 2]\) + Temp[4, 3])\) + \(Temp[3, 2] + Temp[3, 3] - Temp[5, 2] - Temp[5, 3]\)\/\(2548400 + 2548400\ r[4]\) + \((\(-Temp[3, 2]\) - Temp[3, 3] + 2\ Temp[4, 2] + 2\ Temp[4, 3] - Temp[5, 2] - Temp[5, 3])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[4, 3]\) + Temp[4, 4])\) + \(Temp[3, 3] + Temp[3, 4] - Temp[5, 3] - Temp[5, 4]\)\/\(2548400 + 2548400\ r[4]\) + \((\(-Temp[3, 3]\) - Temp[3, 4] + 2\ Temp[4, 3] + 2\ Temp[4, 4] - Temp[5, 3] - Temp[5, 4])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[5, 0]\) + Temp[5, 1])\) + \(Temp[4, 0] + Temp[4, 1] - Temp[6, 0] - Temp[6, 1]\)\/\(2548400 + 2548400\ r[5]\) + \((\(-Temp[4, 0]\) - Temp[4, 1] + 2\ Temp[5, 0] + 2\ Temp[5, 1] - Temp[6, 0] - Temp[6, 1])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[5, 1]\) + Temp[5, 2])\) + \(Temp[4, 1] + Temp[4, 2] - Temp[6, 1] - Temp[6, 2]\)\/\(2548400 + 2548400\ r[5]\) + \((\(-Temp[4, 1]\) - Temp[4, 2] + 2\ Temp[5, 1] + 2\ Temp[5, 2] - Temp[6, 1] - Temp[6, 2])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[5, 2]\) + Temp[5, 3])\) + \(Temp[4, 2] + Temp[4, 3] - Temp[6, 2] - Temp[6, 3]\)\/\(2548400 + 2548400\ r[5]\) + \((\(-Temp[4, 2]\) - Temp[4, 3] + 2\ Temp[5, 2] + 2\ Temp[5, 3] - Temp[6, 2] - Temp[6, 3])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(1.25`*^-11\ \((\(-Temp[5, 3]\) + Temp[5, 4])\) + \(Temp[4, 3] + Temp[4, 4] - Temp[6, 3] - Temp[6, 4]\)\/\(2548400 + 2548400\ r[5]\) + \((\(-Temp[4, 3]\) - Temp[4, 4] + 2\ Temp[5, 3] + 2\ Temp[5, 4] - Temp[6, 3] - Temp[6, 4])\)/3247171280000 == 8.62222222222222178`*^-10\), ",", \(\(-Temp[6, 0]\) + Temp[6, 1] == \(-40\)\), ",", \(\(-Temp[6, 1]\) + Temp[6, 2] == \(-40\)\), ",", \(\(-Temp[6, 2]\) + Temp[6, 3] == \(-40\)\), ",", \(\(-Temp[6, 3]\) + Temp[6, 4] == \(-40\)\), ",", \(Temp[0, 0] - 1.31615154015573643`\ \((\(-75.2835820895522278`\) + 1.24020907206348529`\ Temp[0, 1] - 0.24020907206348534`\ Temp[1, 0] - 0.24020907206348534`\ Temp[1, 1])\) == 0\), ",", \(Temp[0, 1] - 1.31615154015573643`\ \((\(-75.2835820895522278`\) + 1.24020907206348529`\ Temp[0, 2] - 0.24020907206348534`\ Temp[1, 1] - 0.24020907206348534`\ Temp[1, 2])\) == 0\), ",", \(Temp[0, 2] - 1.31615154015573643`\ \((\(-75.2835820895522278`\) + 1.24020907206348529`\ Temp[0, 3] - 0.24020907206348534`\ Temp[1, 2] - 0.24020907206348534`\ Temp[1, 3])\) == 0\), ",", \(Temp[0, 3] - 1.31615154015573643`\ \((\(-75.2835820895522278`\) + 1.24020907206348529`\ Temp[0, 4] - 0.24020907206348534`\ Temp[1, 3] - 0.24020907206348534`\ Temp[1, 4])\) == 0\), ",", RowBox[{\(Temp[0, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[1, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[2, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[3, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[4, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[5, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}], ",", RowBox[{\(Temp[6, 0]\), "==", StyleBox["500.`", StyleBoxAutoDelete->True, PrintPrecision->3]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(soln = Solve[eqns, Table[Temp[i, j], {i, 0, 6}, {j, 0, 4}]]\)], "Input"], Cell[BoxData[ StyleBox[ \(General::"ivar" \( : \ \) "\!\({\(Temp[\(6, 0\)]\), \(Temp[\(6, 1\)]\), \(Temp[\(6, 2\)]\), \ \(Temp[\(6, 3\)]\), \(Temp[\(6, 4\)]\)}\) is not a valid variable."\), FontColor->RGBColor[1, 0, 0]]], "Message"] }, Open ]], Cell[BoxData[ RowBox[{ StyleBox["(*", FontColor->RGBColor[0, 0, 1]], StyleBox[" ", FontColor->RGBColor[0, 0, 1]], StyleBox[ \(This\ is\ my\ problem . \ I\ bold\ it\ in\ red . \ What' s\ wrong\ with\ the\ above?\ I\ want\ to\ find\ the\ solutions\ and\ ListPlot3D\ them . \ I' ve\ spent\ almost\ a\ month\ and\ unfortunately\ I\ still\ can' t\ fix\ it\ out . \ Would\ you\ do\ me \ a\ favour?\ Thank\ \(you . \)\), FontColor->RGBColor[0, 0, 1]], StyleBox[" ", FontColor->RGBColor[0, 0, 1]], StyleBox["*)", FontColor->RGBColor[0, 0, 1]]}]], "Input"] }, FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 640}, {0, 452}}, WindowSize->{462, 234}, WindowMargins->{{3, Automatic}, {Automatic, 5}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 209, 5, 50, "Input"], Cell[CellGroupData[{ Cell[1943, 58, 1131, 30, 125, "Input"], Cell[3077, 90, 757, 23, 83, "Output"] }, Open ]], Cell[3849, 116, 151, 3, 30, "Input"], Cell[CellGroupData[{ Cell[4025, 123, 1962, 40, 333, "Input"], Cell[5990, 165, 472, 8, 188, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6499, 178, 547, 11, 210, "Input"], Cell[7049, 191, 9683, 212, 808, "Output"] }, Open ]], Cell[16747, 406, 122, 2, 30, "Input"], Cell[CellGroupData[{ Cell[16894, 412, 178, 3, 90, "Input"], Cell[17075, 417, 1983, 35, 675, "Output"] }, Open ]], Cell[19073, 455, 238, 5, 70, "Input"], Cell[CellGroupData[{ Cell[19336, 464, 878, 13, 350, "Input"], Cell[20217, 479, 9853, 178, 2641, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[30107, 662, 92, 1, 30, "Input"], Cell[30202, 665, 258, 5, 63, "Message"] }, Open ]], Cell[30475, 673, 676, 16, 110, "Input"] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)
- Follow-Ups:
- Re: Debug program
- From: seanross@worldnet.att.net
- Re: Debug program