Re: Derivative via mathematica
- To: mathgroup@smc.vnet.net
- Subject: [mg10533] Re: [mg10486] Derivative via mathematica
- From: Bob Hanlon <BobHanlon@aol.com>
- Date: Tue, 20 Jan 1998 02:23:19 -0500
- Organization: AOL (http://www.aol.com)
f[t_, m_, b_] := m/(1+Exp[1/t] +b) m/: Dt[m, t] = p; b/: Dt[b, t] = q; D[f[t, m[t], b[t]], t] \!\(\* RowBox[{ RowBox[{"-", FractionBox[ RowBox[{\(m[t]\), " ", RowBox[{"(", RowBox[{\(-\(E\^\(1\/t\)\/t\^2\)\), "+", RowBox[{ SuperscriptBox["b", "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}], ")"}]}], \(\((1 + E\^\(1\/t\) + b[t])\)\^2\)]}], "+", FractionBox[ RowBox[{ SuperscriptBox["m", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], \(1 + E\^\(1\/t\) + b[t]\)]}]\) Dt[f[t, m, b], t] \!\(p\/\(1 + b + E\^\(1\/t\)\) - \(m\ \((q - E\^\(1\/t\)\/t\^2)\)\)\/\((1 + b + E\^\(1\/t\))\)\^2\) Bob Hanlon