Calculus`Limit` is buggy!
- To: mathgroup at smc.vnet.net
- Subject: [mg13185] Calculus`Limit` is buggy!
- From: "Paul A. Rombouts" <paromb at worldonline.nl>
- Date: Mon, 13 Jul 1998 07:42:34 -0400
- Organization: World Online
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 7/4/98 8:01:56 PM, tobi.kamke at t-online.de wrote: >I've a problem. I thought that Limit[Fibonacci[n]/Fibonacci[n-1], n -> >Infinity] is GoldenRatio. > >Mathematica says 1. >What's wrong? Hi, I use Mathematica 3.01 under Windows NT 4.0. I've tried to reproduce your example, but I found out I needed to load the standard package "Calculus`Limit`". In[1]:= Limit[Fibonacci[n+1]/Fibonacci[n],n->Infinity] Fibonacci[1 + n] Out[1]= Limit[----------------, n -> \[Infinity]] Fibonacci[n] In[2]:= Needs["Calculus`Limit`"] In[3]:= Limit[Fibonacci[n+1]/Fibonacci[n],n->Infinity] Out[3]= 1 Well, I certainly found that last answer rather unsettling. I started experimenting with some other limits and I got some very disturbing results. I've summarised the results as follows: In[4]:= f[a_, b_, n_] := a^n + b^n In[5]:= lim[a_,b_]:=Module[{n},Limit[f[a,b,n+1]/f[a,b,n],n->Infinity]] In[6]:= mylim[a_,b_]/;Abs[a]>Abs[b]:=a In[7]:= mylim[a_,b_]/;Abs[a]<Abs[b]:=b In[8]:= mylim[a_,a_]/;a!=0:=a In[9]:= mylim[a_,b_]/;Abs[a]==Abs[b]:=Indeterminate In[10]:= comp[args__]:={{args},lim[args],mylim[args]} In[11]:= TableForm[Apply[comp, {{2, 3}, {(1 + Sqrt[5])/2, (1 - Sqrt[5])/2}, {1/2, 1/3}, {5/6, 7/6}, {3, -5}, {-3, 5}, {I + 1, 2}, {2, 2}, {1/3, -1/3}, {1, I}, {5, 5*I}}, {1}], TableDepth->2] Out[11]//TableForm= {2, 3} 9 3 1 + Sqrt[5] 1 - Sqrt[5] 3 (1 + Sqrt[5]) 1 + Sqrt[5] {-----------, -----------} --------------- ----------- 2 2 2 2 1 1 1 {-, -} - 2 3 0 2 5 7 7 7 {-, -} - - 6 6 6 6 {3, -5} 0 -5 {-3, 5} 15 5 {1 + I, 2} ComplexInfinity 2 {2, 2} 2 2 1 1 {-, -(-)} 3 3 0 Indeterminate {1, I} Indeterminate Indeterminate {5, 5 I} 0 Indeterminate In case it isn't clear from the from the preceding: mylim[a,b] gives the value I think Limit[(a^(n+1)+b^(n+1))/(a^n+b^n),n->Infinity] should have. Conclusion: If you use the package Calculus`Limit` be sure to check your results with alternative methods. greetings, Paul A. Rombouts <P.A.Rombouts at phys.uu.nl>