Indefinite Integration Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg12920] Indefinite Integration Problem
- From: Ed Hall <teh1m at virginia.edu>
- Date: Wed, 24 Jun 1998 03:44:40 -0400
- Organization: University of Virginia
- Sender: owner-wri-mathgroup at wolfram.com
Folks, I would appreciate any assistance in solving the following indefinite integration problem using Mathematica. I can create the expression below (from the Peng-Robinson equation of state) which is real, differentiate w.r.t the variable W, followed by indefinite integration w.r.t. to W to get a complex result rather than the original real expression. I've tried adding Im[W]==0 assumption to the Integrate command w/o success. Composing the expression to be differentiated. In[5]:= V = 1/W; d = Sqrt[u^2*Nt^2*b^2 - 4*w*b^2*Nt^2]; F = -(Nt*Log[(V - Nt*b)/V]) + (a*Nt^2*Log[(2*V + u*Nt*b - d)/ (2*V + u*Nt*b + d)])/(R*T*d) Out[6]= (a*Nt^2*Log[(b*Nt*u - Sqrt[b^2*Nt^2*u^2 - 4*b^2*Nt^2*w] + 2/W)/ (b*Nt*u + Sqrt[b^2*Nt^2*u^2 - 4*b^2*Nt^2*w] + 2/W)])/ (R*T*Sqrt[b^2*Nt^2*u^2 - 4*b^2*Nt^2*w]) - Nt*Log[(-b*Nt + 1/W)*W] In[7]:= F = FullSimplify[F] Out[7]= 1/(R*T)*Nt*(-R*T*Log[1 - b*Nt*W] + (a*Nt*Log[(2 + b*Nt*u*W - Sqrt[b^2*Nt^2* (u^2 - 4*w)]*W)/ (2 + b*Nt*u*W + Sqrt[b^2*Nt^2* (u^2 - 4*w)]*W)])/ Sqrt[b^2*Nt^2*(u^2 - 4*w)]) Taking partial derivative w . r . t . W In[8]:= test = FullSimplify[D[F, W]] Out[8]= Nt^2*(b/(1 - b*Nt*W) - a/(R*T*(1 + b*Nt*W*(u + b*Nt*w*W)))) Performing indefinite integration on result of differentiation. In[9]:= F1 = Integrate[test, W] Out[9]= -((2*a*Nt*ArcTan[(u + 2*b*Nt*w*W)/ Sqrt[-u^2 + 4*w]])/ (b*R*T*Sqrt[-u^2 + 4*w])) - Nt*Log[-1 + b*Nt*W] In[10]:= TrigToExp[F1] Out[10]= -Nt*Log[-1 + b*Nt*W] - (I*a*Nt*(Log[1 - (I*(u + 2*b*Nt*w*W))/ Sqrt[-u^2 + 4*w]] - Log[1 + (I*(u + 2*b*Nt*w*W))/ Sqrt[-u^2 + 4*w]]))/ (b*R*T*Sqrt[-u^2 + 4*w]) The result of the integration F1 is complex whereas the original expression F before differention is real. How can I insure F1 will be real and equal to F? Thanks in advance, Ed ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ed Hall Research Computing Support edhall at virginia.edu Information Technology and Communication 804-924-0620 The University Virginia ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~