RE: Efficient use of coefficient--Efficient simplification
- To: mathgroup@smc.vnet.net
- Subject: [mg11191] RE: [mg11183] Efficient use of coefficient--Efficient simplification
- From: jmt <jmthomas@cybercable.tm.fr>
- Date: Mon, 2 Mar 1998 23:10:48 -0500
- Organization: TeA
- Return-Receipt-To: jmt <jmthomas@cybercable.tm.fr>
Try this: f defines your expression: f[n_]:=-(Sqrt[n] (Sqrt[-1 + n] ket[-2 + n] - Sqrt[n] ket[n])) + Sqrt[1 + n] (Sqrt[1 + n] ket[n] - Sqrt[2 + n] ket[2 + n]) Once your expression is evaluated at u v=Variables@f[u] DeleteCases[v,x_/;Head[x]=!=ket] will give you the set of your ket variables. Hope this helps, ----------------------------------------------- Jean-Marie THOMAS Conseil et Audit en Ingenierie de Calcul www.cybercable.tm.fr/~jmthomas ------------------------------------------------ -----Message d'origine----- De: Joel Cannon [SMTP:cannon@alpha.centenary.edu] Date: mercredi 25 fevrier 1998 09:32 A: mathgroup@smc.vnet.net Objet: [mg11183] Efficient use of coefficient--Efficient simplification I wish to simplify expressions such as the following which possess terms involving ket[n+i]. They involve a variable range of indices i. Out[164]= -(Sqrt[n] (Sqrt[-1 + n] ket[-2 + n] - Sqrt[n] ket[n])) + Sqrt[1 + n] (Sqrt[1 + n] ket[n] - Sqrt[2 + n] ket[2 + n]) I can collect the various terms in ket[n+i] with the following operation: In[176]:= Out[164]//Expand// Table[ket[n+i] Coefficient[#,ket[n+i] ],{i,-2,2}]& //Plus @@ #& Out[176]= -(Sqrt[-1 + n] Sqrt[n] ket[-2 + n]) + (1 + 2 n) ket[n] - Sqrt[1 + n] Sqrt[2 + n] ket[2 + n] My problem is this, Since I do no know what the range of ket[n+i] will be, I would like to write a general expression that will find what ket[n+i] are present and collect the coefficients of each of these. The inelegant wat is to run over a range of i's that will surely bracket any ket[n+i] that I will possibly encounter, but that is distasteful. I am using version 2.2 but will probably switch to 3.0 soon. Any other suggestions to that way I have done things are welcomed. If possible, please copy me on email since I might otherwise miss posts to the newsgroup. cannon@alpha.centenary.edu Thanks very much, ------------------------------------------------------------------------------ Joel W. Cannon | (318)869-5160 Dept. of Physics | (318)869-5026 FAX Centenary College of Louisiana | P. O. Box 41188 | Shreveport, LA 71134-1188 |