MathGroup Archive 1998

[Date Index] [Thread Index] [Author Index]

Search the Archive

Urgent Help please



I have got a InterpolatingFunction with a table data and doing (see data
down)

f=Interpolation[
{
...
...
}

But I need to get a equation to relation the vars. I need something like
this z=f(x,y)

Table data:
{x, y, z}

[{0,30,0}, {0,35,0}, {0,40,0}, {0,45,0}, {0,50,0}, {0,55,0}, {0,60,0},
{0,65,0}, {0,70,0}, {0,75,0}, {0,80,0}, {0,85,0}, {0,90,0}, {0,95,0},
{0,100,0}, {0,105,0}, {0,110,0}, {0,115,0}, {0,120,0}, {0,125,0},
{0,130,0},

{10,30,0}, {10,35,0}, {10,40,0}, {10,45,0}, {10,50,0}, {10,55,0},
{10,60,0}, {10,65,0}, {10,70,0}, {10,75,0}, {10,80,0}, {10,85,0},
{10,90,0}, {10,95,0}, {10,100,0}, {10,105,0}, {10,110,0}, {10,115,0},
{10,120,0}, {10,125,0}, {10,130,0},

{20,30,0.1}, {20,35,0.1}, {20,40,0.1}, {20,45,0.1}, {20,50,0.1},
{20,55,0.1},
{20,60,0.1}, {20,65,0.1}, {20,70,0.1}, {20,75,0.1}, {20,80,0.1},
{20,85,0.1},
{20,90,0.1}, {20,95,0.25}, {20,100,0.25}, {20,105,0.25}, {20,110,0.25},
{20,115,0.25},
{20,120,0.25}, {20,125,0.25}, {20,130,0.25},

{30,30,0.4}, {30,35,0.4}, {30,40,0.5}, {30,45,0.5}, {30,50,0.5},
{30,55,0.5},
{30,60,0.5}, {30,65,0.5}, {30,70,0.5}, {30,75,0.5}, {30,80,0.5},
{30,85,0.5},
{30,90,0.5}, {30,95,0.75}, {30,100,0.5}, {30,105,0.5}, {30,110,0.5},
{30,115,0.75},
{30,120,0.75}, {30,125,0.5}, {30,130,0.5},

{40,30,0.75}, {40,35,0.8}, {40,40,0.9}, {40,45,0.9}, {40,50,1},
{40,55,1},
{40,60,1}, {40,65,1}, {40,70,1}, {40,75,1}, {40,80,1}, {40,85,1},
{40,90,1}, {40,95,1.4}, {40,100,1}, {40,105,1.1}, {40,110,1},
{40,115,1.25},
{40,120,1.25}, {40,125,1.25}, {40,130,1.25},

{50,30,1.35}, {50,35,1.45}, {50,40,1.5}, {50,45,1.5}, {50,50,1.6},
{50,55,1.75},
{50,60,1.75}, {50,65,1.6}, {50,70,1.75}, {50,75,1.9}, {50,80,1.6},
{50,85,1.8},
{50,90,1.75}, {50,95,2.1}, {50,100,1.75}, {50,105,1.75}, {50,110,1.6},
{50,115,2},
{50,120,2}, {50,125,2}, {50,130,2},

{60,30,2}, {60,35,2.1}, {60,40,2.25}, {60,45,2.25}, {60,50,2.5},
{60,55,2.5},
{60,60,2.5}, {60,65,2.5}, {60,70,2.5}, {60,75,2.6}, {60,80,2.5},
{60,85,2.5},
{60,90,2.6}, {60,95,3}, {60,100,2.6}, {60,105,2.6}, {60,110,2.5},
{60,115,3},
{60,120,3}, {60,125,2.75}, {60,130,2.75},

{70,30,2.75}, {70,35,3.1}, {70,40,3.25}, {70,45,3.25}, {70,50,3.5},
{70,55,4},
{70,60,3.5}, {70,65,3.5}, {70,70,3.6}, {70,75,3.6}, {70,80,3.5},
{70,85,3.75},
{70,90,3.6}, {70,95,4.25}, {70,100,3.3}, {70,105,3.75}, {70,110,3.5},
{70,115,4.25},
{70,120,4}, {70,125,3.75}, {70,130,4},

{80,30,3.75}, {80,35,4.1}, {80,40,4.25}, {80,45,4.25}, {80,50,4.6},
{80,55,4.9},
{80,60,4.5}, {80,65,4.5}, {80,70,4.8}, {80,75,5}, {80,80,4.75},
{80,85,5},
{80,90,5}, {80,95,5.5}, {80,100,4.9}, {80,105,5}, {80,110,4.75},
{80,115,5.25},
{80,120,5.25}, {80,125,5}, {80,130,5},

{90,30,4.75}, {90,35,5.1}, {90,40,5.25}, {90,45,5.5}, {90,50,5.8},
{90,55,6},
{90,60,5.9}, {90,65,6.25}, {90,70,6.1}, {90,75,6.4}, {90,80,6},
{90,85,6},
{90,90,6}, {90,95,6.75}, {90,100,6}, {90,105,6.1}, {90,110,6},
{90,115,6.75},
{90,120,6.5}, {90,125,6.25}, {90,130,6.5},

{100,30,5.75}, {100,35,6.1}, {100,40,6.5}, {100,45,6.75}, {100,50,7.1},
{100,55,7.25},
{100,60,7.2}, {100,65,7.4}, {100,70,7.5}, {100,75,7.75}, {100,80,7.1},
{100,85,7.5},
{100,90,7.5}, {100,95,8.25}, {100,100,7.5}, {100,105,7.5},
{100,110,7.25}, {100,115,8},
{100,120,8}, {100,125,7.75}, {100,130,7.75},

{110,30,6.75}, {110,35,7.1}, {110,40,7.6}, {110,45,8.1}, {110,50,8.5},
{110,55,8.75},
{110,60,8.7}, {110,65,8.7}, {110,70,9}, {110,75,8.75}, {110,80,8.75},
{110,85,9},
{110,90,9}, {110,95,9.75}, {110,100,9}, {110,105,9}, {110,110,8.75},
{110,115,9.6},
{110,120,9.5}, {110,125,9.25}, {110,130,9.5},

{120,30,7.75}, {120,35,8.1}, {120,40,9}, {120,45,9.25}, {120,50,9.75},
{120,55,10.25},
{120,60,10}, {120,65,10}, {120,70,10.5}, {120,75,10.75}, {120,80,10.25},
{120,85,10.5},
{120,90,10.5}, {120,95,11.25}, {120,100,10.5}, {120,105,10.5},
{120,110,10.5}, {120,115,11},
{120,120,11}, {120,125,10.75}, {120,130,10.75},

{130,30,9}, {130,35,9.7}, {130,40,10.1}, {130,45,10.75}, {130,50,11.25},
{130,55,11.5},
{130,60,11.7}, {130,65,11.5}, {130,70,11.75}, {130,75,12.25},
{130,80,11.75}, {130,85,12},
{130,90,12}, {130,95,13}, {130,100,12.1}, {130,105,12.25},
{130,110,11.75}, {130,115,12.8},
{130,120,12.5}, {130,125,12.5}, {130,130,12.5},

{140,30,10}, {140,35,10.8}, {140,40,11.1}, {140,45,12}, {140,50,12.75},
{140,55,13},
{140,60,13}, {140,65,13}, {140,70,12.25}, {140,75,13.6}, {140,80,13.5},
{140,85,13.25},
{140,90,13.5}, {140,95,14.75}, {140,100,13.75}, {140,105,13.5},
{140,110,13.5}, {140,115,14.6},
{140,120,14.1}, {140,125,14.25}, {140,130,14.5},

{150,30,10.75}, {150,35,11.7}, {150,40,12.3}, {150,45,13.3},
{150,50,14}, {150,55,14.1},
{150,60,14.1}, {150,65,14.5}, {150,70,14.9}, {150,75,15.4},
{150,80,14.75}, {150,85,14.75},
{150,90,15.1}, {150,95,16.25}, {150,100,15.5}, {150,105,15.25},
{150,110,14.5}, {150,115,16.25},
{150,120,16}, {150,125,16}, {150,130,16},

{160,30,11}, {160,35,12.7}, {160,40,13.1}, {160,45,14.4},
{160,50,15.25}, {160,55,15},
{160,60,15.8}, {160,65,16}, {160,70,16.1}, {160,75,16.6}, {160,80,16.4},
{160,85,16.25},
{160,90,17}, {160,95,18}, {160,100,16.25}, {160,105,17},
{160,110,16.75}, {160,115,17.75},
{160,120,17.6}, {160,125,17.5}, {160,130,17.6},

{170,30,11.5}, {170,35,13.3}, {170,40,14}, {170,45,15.4},
{170,50,16.25}, {170,55,16.75},
{170,60,17.2}, {170,65,17.1}, {170,70,17.75}, {170,75,18},
{170,80,17.75}, {170,85,17.6},
{170,90,19.25}, {170,95,18.5}, {170,100,18.6}, {170,105,18.6},
{170,110,17.5}, {170,115,19.25},
{170,120,19}, {170,125,19}, {170,130,19},

{180,30,12.5}, {180,35,14}, {180,40,14.3}, {180,45,15.6},
{180,50,17.25}, {180,55,17.75},
{180,60,18.2}, {180,65,18.4}, {180,70,19.25}, {180,75,19.25},
{180,80,18.75}, {180,85,19.1},
{180,90,18.5}, {180,95,21}, {180,100,2.}, {180,105,20.25},
{180,110,18.75}, {180,115,21.25},
{180,120,20.5}, {180,125,20.75}, {180,130,20.5},

{190,30,12.8}, {190,35,14.5}, {190,40,14.7}, {190,45,16.4},
{190,50,18.25}, {190,55,18.2},
{190,60,19}, {190,65,19.5}, {190,70,20.5}, {190,75,20.6},
{190,80,20.25}, {190,85,20},
{190,90,19.5}, {190,95,22.75}, {190,100,21.5}, {190,105,21.5},
{190,110,20.25}, {190,115,22.75},
{190,120,22}, {190,125,22}, {190,130,22.25},

{200,30,13}, {200,35,14.6}, {200,40,15.1}, {200,45,16.75}, {200,50,19},
{200,55,19.25},
{200,60,19.6}, {200,65,20.25}, {200,70,21.5}, {200,75,21.4},
{200,80,20.75}, {200,85,21.4},
{200,90,20.6}, {200,95,24}, {200,100,23}, {200,105,23}, {200,110,22.25},
{200,115,24.1},
{200,120,23.5}, {200,125,23.25}, {200,130,23.25},

{210,30,13.3}, {210,35,14.8}, {210,40,15.6}, {210,45,17.25},
{210,50,19.25}, {210,55,20.1},
{210,60,20}, {210,65,21.5}, {210,70,22.4}, {210,75,21.6}, {210,80,22},
{210,85,22.1},
{210,90,22.4}, {210,95,25}, {210,100,24}, {210,105,24.25},
{210,110,23.75}, {210,115,25.5},
{210,120,24.75}, {210,125,25.25}, {210,130,25},

{220,30,13.5}, {220,35,15.1}, {220,40,16}, {220,45,18}, {220,50,19.5},
{220,55,20.6},
{220,60,20.6}, {220,65,22.2}, {220,70,23.1}, {220,75,22.25},
{220,80,23.25}, {220,85,23.1},
{220,90,23}, {220,95,25.25}, {220,100,25.1}, {220,105,25.25},
{220,110,25}, {220,115,26.75},
{220,120,26}, {220,125,26.75}, {220,130,27},

{230,30,13.75}, {230,35,15.3}, {230,40,16.4}, {230,45,18.25},
{230,50,19.75}, {230,55,20.9},
{230,60,21.25}, {230,65,22.5}, {230,70,24}, {230,75,22.6},
{230,80,23.5}, {230,85,23.5},
{230,90,23.4}, {230,95,26.4}, {230,100,26.1}, {230,105,26.25},
{230,110,26.25}, {230,115,27.75},
{230,120,27.5}, {230,125,28}, {230,130,27.75},

{240,30,14}, {240,35,15.5}, {240,40,17}, {240,45,18.9}, {240,50,20},
{240,55,21.6},
{240,60,22.1}, {240,65,23.3}, {240,70,24.5}, {240,75,23}, {240,80,24},
{240,85,24},
{240,90,24.6}, {240,95,27.75}, {240,100,26.6}, {240,105,27.25},
{240,110,27.25}, {240,115,28.75},
{240,120,28.5}, {240,125,28.75}, {240,130,29},

{250,30,14.25}, {250,35,15.8}, {250,40,17.25}, {250,45,19.25},
{250,50,20.25}, {250,55,22.1},
{250,60,22.6}, {250,65,24.1}, {250,70,25.25}, {250,75,24.5},
{250,80,24.5}, {250,85,25.25},
{250,90,25.5}, {250,95,28.25}, {250,100,27.5}, {250,105,27.75},
{250,110,27.75}, {250,115,29.25},
{250,120,29.5}, {250,125,29.75}, {250,130,29.75},

]




  • Prev by Date: defining precision (Q:)
  • Next by Date: Re: Simplifying algebraic expr: howto?
  • Prev by thread: Re: defining precision (Q:)
  • Next by thread: making MatrixForm[] default?