Integrate E^(I x) Bug?
- To: mathgroup@smc.vnet.net
- Subject: [mg11469] Integrate E^(I x) Bug?
- From: gts@mindspring.com (Garrett Tim Sos)
- Date: Thu, 12 Mar 1998 01:34:47 -0500
- Organization: MindSpring Enterprises
Is this a bug? Note: I is the Sqrt[-1] In[49]:= et01=E^(I x) Integrate[et01,{x,0,Infinity}] et02=ExpToTrig[et01] Integrate[et02,{x,0,Infinity}] et03=Integrate[et01,{x,0,a}] Limit[et03,a->Infinity] Out[49]= \!\(E\^\(I\ x\)\) Out[50]= I ^^^ What? Out[51]= Cos[x]+I Sin[x] Integrate::"idiv": "Integral of \!\(\(Cos[x]\) + \(I\\ \(Sin[x]\)\)\) does not converge on \ \!\({0, \*InterpretationBox[\"\\[Infinity]\", DirectedInfinity[1]]}\)." Out[52]= \!\(\* RowBox[{ SubsuperscriptBox["", "0", InterpretationBox["", DirectedInfinity[ 1]]], \(\((Cos[x] + I\ Sin[x])\) \[DifferentialD]x\)}]\) ^^^ the Cos[x]+I Sin[x] form of E^(I x) does not integrate! Out[53]= \!\(I - I\ E\^\(I\ a\)\) Out[54]= \!\(\* RowBox[{"Limit", "[", RowBox[{\(I - I\ E\^\(I\ a\)\), ",", RowBox[{"a", "\[Rule]", InterpretationBox["", DirectedInfinity[ 1]]}]}], "]"}]\) I know forms like E^( (I - a) x ) should converge if a>0 on (0,Infinity) because you can visualise this as E^(I x) E^(- a x) and the E^(- a x) damps out the E^(I x) term as x->Infinity Mathematica Version 3.0.1.1x running on a Macintosh PowerPC 7100/66 Thanks for the Help.