Re: Re: Eigenvalues
- To: mathgroup@smc.vnet.net
- Subject: [mg11571] Re: [mg11489] Re: [mg11476] Eigenvalues
- From: Daniel Lichtblau <danl@wolfram.com>
- Date: Tue, 17 Mar 1998 10:42:55 -0500
- References: <199803120635.BAA23688@smc.vnet.net.> <199803131721.MAA03635@smc.vnet.net.>
Daniel Lichtblau wrote: > > Raya Khanin wrote: > > > > Hi, > > > > I have a problem of calculating eigenvalues for a simple 4X4 matrix. I > > am working on Sun workstation, and it takes minutes and minutes for > > Mathematica to perform Eigenvalues[] operation for a matrix like this > > > > Clear[a, b, c, d, e, d, f, g]; > > testmatrix = {{a, b, c, d}, {b, c, d, e}, {c, d, e, f}, {d, e, f, g}}; > > Eigenvalues[testmatrix]; > > > > I get a huge result quite quickly. To improve on the size, try > > In[72]:= testmatrix = {{a, b, c, d}, {b, c, d, e}, > {c, d, e, f}, {d, e, f, g}}; > > In[73]:= Timing[ev = Eigenvalues[testmatrix];] Out[73]= {0.83 Second, > Null} > > In[74]:= LeafCount[ev] > Out[74]= 1449 > ... > Daniel Lichtblau > Wolfram Research Sorry, I missed an important line in the cut-and-paste. First do SetOptions[Roots, Quartics->False] This is because Eigenvalues will, in the symbolic case, compute and call Roots on the characteristic polynomial. (Still Daniel Lichtblau at WRI)
- References:
- Eigenvalues
- From: Raya Khanin <raya@maths.ed.ac.uk>
- Re: Eigenvalues
- From: Daniel Lichtblau <danl@wolfram.com>
- Eigenvalues