MathGroup Archive 1998

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: series expansion of polys with real exponents



Hafeez Abdulrauf wrote:
> 
> Hi,
> 
> I would like to find the series expansion of an expression like
> 
> 2 D / (2 -D^0.2 -D^1.8)
> 
> in positive (real) powers of D. As the expression has real exponents on
> D, it's not really a polynomial and none of the polynomial functions
> work here. Is there any way to work it out?
> 
> Regards,
> Rauf

and, in reply to my previous posting,

> substituting x^5 for D and then using
> Series[] does get me what I want.

This raised some interesting issues about which kind of approach to use.

I copy my reply:

Rauf:

So, something like

f[D_]=2 D / (2 -D^(1/5) -D^(9/5));

Hf[D_,p_,n_]:=(Series[(f[D]/.D->x^5),{x,p^(1/5),n}]//Normal)/.x->D^(1/5)


Interestingly, with the exact form of the exponents and p = 0, we get

Sf[D_,p_,n_]:=Series[f[D],{D,p,n}]//Normal

Hf[D,0,14]

     6/5    7/5    8/5    9/5    2    11/5    12/5    13/5
    D      D      D      D      D    D       D       D D + ---- + ---- +
---- + ---- + -- + ----- + ----- + ----- + 
     2      4      8      16    32    64      128     256
 
       14/5
  257 D
  ---------
     512

Sf[D,0,2]//Expand

     6/5    7/5    8/5    9/5    2    11/5    12/5    13/5
    D      D      D      D      D    D       D       D D + ---- + ---- +
---- + ---- + -- + ----- + ----- + ----- + 
     2      4      8      16    32    64      128     256
 
       14/5
  257 D
  ---------
     512


But Sf does not use non-integral powers when p is not 0,

Hf[D,.5,10]//Expand

          8             9  1/5             10  2/5 2.54485 10  - 2.96111
10  D    + 1.55076 10   D    - 
 
            10  3/5             10  4/5             11
  4.81374 10   D    + 9.80804 10   D    - 1.37064 10   D + 
 
            11  6/5             10  7/5
  1.33046 10   D    - 8.85787 10   D    + 
 
            10  8/5            10  9/5             9  2
  3.87112 10   D    - 1.0028 10   D    + 1.16931 10  D


Sf[D,.5,10]//Expand

                               2            3 0.996243 - 19.6231 D +
200.44 D  - 1122.24 D  + 
 
           4            5            6           7
  4165.68 D  - 10634.3 D  + 18957.7 D  - 23309. D  + 
 
           8            9            10
  18952.3 D  - 9219.22 D  + 2048.57 D


Here are some comparisons

f0=Plot[Evaluate[f[D]//N],{D,.001,.8},
        PlotStyle -> {GrayLevel[.8], Thickness[0.02]}];

Hf0=Plot[Evaluate[Hf[D,0,40]],{D,.001,.8},
        PlotStyle -> Hue[.6]];

Sf0=Plot[Evaluate[Sf[D,0,7]],{D,.001,.8},PlotRange->All,
        AxesOrigin->{0,0}, PlotStyle->Hue[0]];

Show[f0,Hf0,Sf0];


f1=Plot[Evaluate[f[D]//N],{D,.1,.9},
        PlotStyle -> {GrayLevel[.8], Thickness[0.02]}];

Hf1=Plot[Evaluate[Hf[D,.5,10]],{D,.2,.9},
        PlotStyle -> Hue[.6]];

Sf1=Plot[Evaluate[Sf[D,.5,10]],{D,.001,.9},PlotRange->All,
        AxesOrigin->{0,0}, PlotStyle->Hue[0]];

Show[f1,Hf1,Sf1];


f2=Plot[Evaluate[f[D]//N],{D,1.1,2.9},
        PlotStyle -> {GrayLevel[.8], Thickness[0.02]}];

Hf2=Plot[Evaluate[Hf[D,2.0,4]],{D,1.1,2.9},
        PlotStyle -> Hue[.6]];

Sf2=Plot[Evaluate[Sf[D,2.0,4]],{D,1.1,2.9},PlotRange->All,
 PlotStyle->Hue[0]];

Show[f2,Hf2,Sf2, PlotRange->All];


-- 
Allan Hayes
Mathematica Training and Consulting
Leicester, UK
hay@haystack.demon.co.uk
http://www.haystack.demon.co.uk
voice: +44 (0)116 271 4198
fax: +44 (0)116 271 8642




  • Prev by Date: Re: series expansion of polys with real exponents
  • Next by Date: Re: Data Extraction from List {{x1,y1}..{xn,yn}}where ##<x<##
  • Prev by thread: Re: series expansion of polys with real exponents
  • Next by thread: Re: Plotting a Vertical Line