Re: Plotting w/o artifacts at discontinuities
- To: mathgroup@smc.vnet.net
- Subject: [mg12168] Re: [mg12082] Plotting w/o artifacts at discontinuities
- From: "Jürgen Tischer" <jtischer@pitagoras.univalle.edu.co>
- Date: Fri, 1 May 1998 03:08:21 -0400
Hi Bruce, I hope you are satisfied with a bare minimum, to be elaborated along the lines of the plot functions say in the graphics package. In[1]:= nojump[{a_, b_}, {c_, d_}] := Abs[(d - b)/(c - a)] < 5000 In[2]:= splitLine[Line[li_]]:=Line/@Cases[Split[li,nojump],{_,__}] splitLine[x_]:=splitLine/@x; In[3]:= plotNoJumps[fun_,rang_,ops___Rule]:= With[{gr=Plot[fun,rang,DisplayFunction->Identity, ops]}, Show[splitLine[gr],DisplayFunction->$DisplayFunction]] Jürgen -----Original Message----- From: Bruce Cohen %FEC <bic@cgl.ucsf.EDU> To: mathgroup@smc.vnet.net Subject: [mg12168] [mg12082] Plotting w/o artifacts at discontinuities >I would like to be able to get plots that do not have artifacts from >discontinuities without having to know where the problem[s] will be in >advance. > >For example, I would like to be able to say > Plot[1/(1+x), {x,-2,1}] >and get a graph without the vertical line at x==-1. Though > p1=Plot[1/(1+x), {x,-2,-1}, DisplayFunction->Identity]; > p2=Plot[1/(1+x), {x,-1,1}, DisplayFunction->Identity]; > Show[p1,p2, DisplayFunction->$DisplayFunction]; does the trick, it >requires my anticipation of the problem at x==1. > > >Thanks. > >-Bruce > Bruce Cohen | INTERNET: bic@cgl.ucsf.edu > Lick-Wilmerding High School | >bic@lick.pvt.k12.ca.us > 755 Ocean Avenue | VOICE: (415) 333-4021 > San Francisco, CA 94112 | FAX: (415) 333-9443 -- > Bruce Cohen | INTERNET: bic@cgl.ucsf.edu > Lick-Wilmerding High School | >bic@lick.pvt.k12.ca.us > 755 Ocean Avenue | VOICE: (415) 333-4021 > San Francisco, CA 94112 | FAX: (415) 333-9443 >