MathGroup Archive 1998

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Re: Re: Boundary cond. at Infinity



Hopefully nobody will get mad about me, leaving all that stuff in my
message. The thing is, up to now I was not once able to read those
added notebooks. Am I alone with that problem? I tried to copy the
notebook in a file to read it afterwards, I tried to fill it directly
in a new notebook, the result is always the same. Mathematica is quite
willing to read and encounters a syntax error in line (in this case)
97. And while complaining, a lot of the messages (mine included) come
out as sancocho (which is a local dish comparable with a stew). And
lately the timestamps obviously are mixed up, while reading messages I
get deja vus en masse.

I would be glad to find some fellow sufferers, or even better some
advice to do better. I am subscribed to Mathgroup, there is no
(reasonable) way for me to connect via newsgroup.

Jürgen

Universidad del Valle
Cali
Colombia

-----Original Message-----
From: Bob Hanlon <BobHanlon@aol.com> To: mathgroup@smc.vnet.net
Subject: [mg12253] [mg12202] Re: [mg12160] Re: [mg12097] Boundary cond. at
Infinity


>I believethat this notebook is a clearer and more accurate response than
>my first response.
>
>Bob Hanlon
>__________________________
>
>Notebook[{
>Cell[BoxData[
>    \(TraditionalForm\`Needs["\<Algebra`InequalitySolve`\>"]\)],
>"Input"],
>
>Cell[BoxData[
>    FormBox[
>      RowBox[{\(f(x_, a_)\), ":=",
>        TagBox[
>          RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
>            RowBox[{
>              RowBox[{
>                TagBox[\(\(a + 1\)\/2\),
>                  (Editable -> True)], ",",
>                TagBox["1",
>                  (Editable -> True)]}], ";",
>              TagBox[\(\(a + 1\)\/2 + 1\),
>                (Editable -> True)], ";",
>              TagBox[\(-\[ExponentialE]\^\(2\ x\)\),
>                (Editable -> True)]}], ")"}],
>          InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]]}],
>      TraditionalForm]], "Input"],
>
>Cell["For n=0,1,2,3,... there is a discontinuity at", "Text"],
>
>Cell[CellGroupData[{
>
>Cell[BoxData[
>    \(TraditionalForm\`Solve[\(a + 1\)\/2 + 1 == \(-n\), a]\)],
>"Input"],
>
>Cell[BoxData[
>    \(TraditionalForm\`{{a \[Rule] \(-2\)\ n - 3}}\)], "Output"] }, Open
>]],
>
>Cell["That is, there is a discontinuity for a = -3,-5,-7,...", "Text"],
>
>Cell[BoxData[
>    \(TraditionalForm
>    \`\(Plot3D[f[x, a], \ {a, \(-8.1\), 4.1}, {x, \(-1.5\), 4},
>      PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
>
>      PlotRange -> {\(-50\), 50}, \ ImageSize -> {450, 365}]; \)\)],
>"Input"],
>
>
>Cell[TextData[{
>  "Since the argument (-",
>  Cell[BoxData[
>      \(TraditionalForm\`\[ExponentialE]\^\(2  x\)\)]],
>  ") is negative, the terms of the hypergeometric series alternate
>signs.  \ This is not a convenient form for determining the limit.
>Using a linear \ transformation (Abramowitz and Stegun, 15.3.5) to
>obtain a positive \ argument:"
>}], "Text"],
>
>Cell[BoxData[
>    FormBox[
>      RowBox[{
>        RowBox[{"trans", "=",
>          RowBox[{
>            TagBox[
>              RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
>                RowBox[{
>                  RowBox[{
>                    TagBox["a_",
>                      (Editable -> True)], ",",
>                    TagBox["b_",
>                      (Editable -> True)]}], ";",
>                  TagBox["c_",
>                    (Editable -> True)], ";",
>                  TagBox["z_",
>                    (Editable -> True)]}], ")"}],
>              InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
>            "\[Rule]",
>            FractionBox[
>              TagBox[
>                RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
>                  RowBox[{
>                    RowBox[{
>                      TagBox["b",
>                        (Editable -> True)], ",",
>                      TagBox[\(c - a\),
>                        (Editable -> True)]}], ";",
>                    TagBox["c",
>                      (Editable -> True)], ";",
>                    TagBox[\(z\/\(z - 1\)\),
>                      (Editable -> True)]}], ")"}],
>                InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
>
>              \(\((1 - z)\)\^b\)]}]}], ";"}], TraditionalForm]],
>"Input"],
>
>Cell[CellGroupData[{
>
>Cell[BoxData[
>    \(TraditionalForm\`f2\  = \ Simplify[f(x, a) /. trans]\)], "Input"],
>
>Cell[BoxData[
>    FormBox[
>      FractionBox[
>        TagBox[
>          RowBox[{\(\(\[ThinSpace]\_2\)F\_1\), "(",
>            RowBox[{
>              RowBox[{
>                TagBox["1",
>                  (Editable -> True)], ",",
>                TagBox["1",
>                  (Editable -> True)]}], ";",
>              TagBox[\(\(a + 3\)\/2\),
>                (Editable -> True)], ";",
>
>              TagBox[\(\[ExponentialE]\^\(2\ x\)\/\(1 +
>                      \[ExponentialE]\^\(2\ x\)\)\),
>                (Editable -> True)]}], ")"}],
>          InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
>        \(1 + \[ExponentialE]\^\(2\ x\)\)], TraditionalForm]], "Output"]
>}, Open  ]],
>
>Cell["As x approaches +Infinity, and for", "Text"],
>
>Cell[CellGroupData[{
>
>Cell[BoxData[
>    \(TraditionalForm\`InequalitySolve(\(a + 3\)\/2 - 1 - 1 > 0, a)\)],
>  "Input"],
>
>Cell[BoxData[
>    \(TraditionalForm\`a > 1\)], "Output"] }, Open  ]],
>
>Cell["the numerator will tend towards", "Text"],
>
>Cell[CellGroupData[{
>
>Cell[BoxData[
>    FormBox[
>      TagBox[
>        RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
>          RowBox[{
>            RowBox[{
>              TagBox["1",
>                (Editable -> True)], ",",
>              TagBox["1",
>                (Editable -> True)]}], ";",
>            TagBox[\(\(a + 3\)\/2\),
>              (Editable -> True)], ";",
>            TagBox["1",
>              (Editable -> True)]}], ")"}],
>        InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
>      TraditionalForm]], "Input"],
>
>Cell[BoxData[
>    \(TraditionalForm\`\(a + 1\)\/\(a - 1\)\)], "Output"] }, Open  ]],
>
>Cell["\<\
>And the denominator tends to Infinity.  For a>1 the limit as x goes \ to
>+Infinity is then zero.\
>\>", "Text"],
>
>Cell[BoxData[
>    \(TraditionalForm
>    \`\(Plot3D[f[x, a], {a, \(-1\), 4.1}, {x, \(-1.5\), 4},
>      PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
>
>      ImageSize -> {450, 365}]; \)\)], "Input"],
>
>Cell[CellGroupData[{
>
>Cell[BoxData[
>    \(TraditionalForm\`f2\  /. \ x -> \(-Infinity\)\)], "Input"],
>
>Cell[BoxData[
>    \(TraditionalForm\`1\)], "Output"] }, Open  ]],
>
>Cell[BoxData[
>    \(TraditionalForm
>    \`\(Plot3D[f[x, a], {a, \(-8.1\), 4.1}, {x, \(-15\), \(-3\)},
>      PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
>
>      PlotRange -> {.975, 1.025}, \ ImageSize -> {450, 365}]; \)\)],
>"Input"] },
>FrontEndVersion->"Macintosh 3.0",
>ScreenRectangle->{{0, 1024}, {0, 748}}, WindowSize->{729, 701},
>WindowMargins->{{20, Automatic}, {Automatic, 6}}, ShowCellLabel->False,
>MacintoshSystemPageSetup->"\<\
>00<0001804P000000]P2:?oQon82n@960dL5:0?l0080001804P000000]P2:001
>0000I00000400`<300000BL?00400@0000000000000006P801T1T00000000000
>00000000000000000000000000000000\>"
>]
>




  • Prev by Date: Re: [correction] Pattern matching more than once
  • Next by Date: complexexpand, correction
  • Prev by thread: Re: Re: Boundary cond. at Infinity
  • Next by thread: Re: Boundary cond. at Infinity