Re: Re: Re: Boundary cond. at Infinity
- To: mathgroup@smc.vnet.net
- Subject: [mg12253] Re: [mg12202] Re: [mg12160] Re: [mg12097] Boundary cond. at Infinity
- From: "Jrgen_Tischer" <jtischer@pitagoras.univalle.edu.co>
- Date: Tue, 5 May 1998 03:29:49 -0400
Hopefully nobody will get mad about me, leaving all that stuff in my message. The thing is, up to now I was not once able to read those added notebooks. Am I alone with that problem? I tried to copy the notebook in a file to read it afterwards, I tried to fill it directly in a new notebook, the result is always the same. Mathematica is quite willing to read and encounters a syntax error in line (in this case) 97. And while complaining, a lot of the messages (mine included) come out as sancocho (which is a local dish comparable with a stew). And lately the timestamps obviously are mixed up, while reading messages I get deja vus en masse. I would be glad to find some fellow sufferers, or even better some advice to do better. I am subscribed to Mathgroup, there is no (reasonable) way for me to connect via newsgroup. Jürgen Universidad del Valle Cali Colombia -----Original Message----- From: Bob Hanlon <BobHanlon@aol.com> To: mathgroup@smc.vnet.net Subject: [mg12253] [mg12202] Re: [mg12160] Re: [mg12097] Boundary cond. at Infinity >I believethat this notebook is a clearer and more accurate response than >my first response. > >Bob Hanlon >__________________________ > >Notebook[{ >Cell[BoxData[ > \(TraditionalForm\`Needs["\<Algebra`InequalitySolve`\>"]\)], >"Input"], > >Cell[BoxData[ > FormBox[ > RowBox[{\(f(x_, a_)\), ":=", > TagBox[ > RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(", > RowBox[{ > RowBox[{ > TagBox[\(\(a + 1\)\/2\), > (Editable -> True)], ",", > TagBox["1", > (Editable -> True)]}], ";", > TagBox[\(\(a + 1\)\/2 + 1\), > (Editable -> True)], ";", > TagBox[\(-\[ExponentialE]\^\(2\ x\)\), > (Editable -> True)]}], ")"}], > InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]]}], > TraditionalForm]], "Input"], > >Cell["For n=0,1,2,3,... there is a discontinuity at", "Text"], > >Cell[CellGroupData[{ > >Cell[BoxData[ > \(TraditionalForm\`Solve[\(a + 1\)\/2 + 1 == \(-n\), a]\)], >"Input"], > >Cell[BoxData[ > \(TraditionalForm\`{{a \[Rule] \(-2\)\ n - 3}}\)], "Output"] }, Open >]], > >Cell["That is, there is a discontinuity for a = -3,-5,-7,...", "Text"], > >Cell[BoxData[ > \(TraditionalForm > \`\(Plot3D[f[x, a], \ {a, \(-8.1\), 4.1}, {x, \(-1.5\), 4}, > PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None}, > > PlotRange -> {\(-50\), 50}, \ ImageSize -> {450, 365}]; \)\)], >"Input"], > > >Cell[TextData[{ > "Since the argument (-", > Cell[BoxData[ > \(TraditionalForm\`\[ExponentialE]\^\(2 x\)\)]], > ") is negative, the terms of the hypergeometric series alternate >signs. \ This is not a convenient form for determining the limit. >Using a linear \ transformation (Abramowitz and Stegun, 15.3.5) to >obtain a positive \ argument:" >}], "Text"], > >Cell[BoxData[ > FormBox[ > RowBox[{ > RowBox[{"trans", "=", > RowBox[{ > TagBox[ > RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(", > RowBox[{ > RowBox[{ > TagBox["a_", > (Editable -> True)], ",", > TagBox["b_", > (Editable -> True)]}], ";", > TagBox["c_", > (Editable -> True)], ";", > TagBox["z_", > (Editable -> True)]}], ")"}], > InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]], > "\[Rule]", > FractionBox[ > TagBox[ > RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(", > RowBox[{ > RowBox[{ > TagBox["b", > (Editable -> True)], ",", > TagBox[\(c - a\), > (Editable -> True)]}], ";", > TagBox["c", > (Editable -> True)], ";", > TagBox[\(z\/\(z - 1\)\), > (Editable -> True)]}], ")"}], > InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]], > > \(\((1 - z)\)\^b\)]}]}], ";"}], TraditionalForm]], >"Input"], > >Cell[CellGroupData[{ > >Cell[BoxData[ > \(TraditionalForm\`f2\ = \ Simplify[f(x, a) /. trans]\)], "Input"], > >Cell[BoxData[ > FormBox[ > FractionBox[ > TagBox[ > RowBox[{\(\(\[ThinSpace]\_2\)F\_1\), "(", > RowBox[{ > RowBox[{ > TagBox["1", > (Editable -> True)], ",", > TagBox["1", > (Editable -> True)]}], ";", > TagBox[\(\(a + 3\)\/2\), > (Editable -> True)], ";", > > TagBox[\(\[ExponentialE]\^\(2\ x\)\/\(1 + > \[ExponentialE]\^\(2\ x\)\)\), > (Editable -> True)]}], ")"}], > InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]], > \(1 + \[ExponentialE]\^\(2\ x\)\)], TraditionalForm]], "Output"] >}, Open ]], > >Cell["As x approaches +Infinity, and for", "Text"], > >Cell[CellGroupData[{ > >Cell[BoxData[ > \(TraditionalForm\`InequalitySolve(\(a + 3\)\/2 - 1 - 1 > 0, a)\)], > "Input"], > >Cell[BoxData[ > \(TraditionalForm\`a > 1\)], "Output"] }, Open ]], > >Cell["the numerator will tend towards", "Text"], > >Cell[CellGroupData[{ > >Cell[BoxData[ > FormBox[ > TagBox[ > RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(", > RowBox[{ > RowBox[{ > TagBox["1", > (Editable -> True)], ",", > TagBox["1", > (Editable -> True)]}], ";", > TagBox[\(\(a + 3\)\/2\), > (Editable -> True)], ";", > TagBox["1", > (Editable -> True)]}], ")"}], > InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]], > TraditionalForm]], "Input"], > >Cell[BoxData[ > \(TraditionalForm\`\(a + 1\)\/\(a - 1\)\)], "Output"] }, Open ]], > >Cell["\<\ >And the denominator tends to Infinity. For a>1 the limit as x goes \ to >+Infinity is then zero.\ >\>", "Text"], > >Cell[BoxData[ > \(TraditionalForm > \`\(Plot3D[f[x, a], {a, \(-1\), 4.1}, {x, \(-1.5\), 4}, > PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None}, > > ImageSize -> {450, 365}]; \)\)], "Input"], > >Cell[CellGroupData[{ > >Cell[BoxData[ > \(TraditionalForm\`f2\ /. \ x -> \(-Infinity\)\)], "Input"], > >Cell[BoxData[ > \(TraditionalForm\`1\)], "Output"] }, Open ]], > >Cell[BoxData[ > \(TraditionalForm > \`\(Plot3D[f[x, a], {a, \(-8.1\), 4.1}, {x, \(-15\), \(-3\)}, > PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None}, > > PlotRange -> {.975, 1.025}, \ ImageSize -> {450, 365}]; \)\)], >"Input"] }, >FrontEndVersion->"Macintosh 3.0", >ScreenRectangle->{{0, 1024}, {0, 748}}, WindowSize->{729, 701}, >WindowMargins->{{20, Automatic}, {Automatic, 6}}, ShowCellLabel->False, >MacintoshSystemPageSetup->"\<\ >00<0001804P000000]P2:?oQon82n@960dL5:0?l0080001804P000000]P2:001 >0000I00000400`<300000BL?00400@0000000000000006P801T1T00000000000 >00000000000000000000000000000000\>" >] >