swap again
- To: mathgroup@smc.vnet.net
- Subject: [mg12422] swap again
- From: "Arturas Acus" <acus@itpa.lt>
- Date: Thu, 14 May 1998 11:15:31 -0400
Hello, I want to say that with new mathkernel.exe problem still persist. Actually I am not very interesting in the problem, but I think it can be of some value if it is reproducible. I am sure that this is some memory handling problem. The problem is too small to be out of memory with 32RAM and 310Mb swap (there are no disk activity at all). Interesting that I am able to simplify the particular element wich causes the problem separatly. But I get "out of memory" message when I try to simplify the whole matrix (inside Table to save memory of course). For those who are interesting I attach the whole notebook. Arturas Acus Institute of Theoretical Physics and Astronomy Gostauto 12, 2600,Vilnius Lithuania E-mail: acus@itpa.lt Fax: 370-2-225361 Tel: 370-2-612906 -------------- Enclosure number 1 ---------------- (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 21560, 588]*) (*NotebookOutlinePosition[ 22209, 611]*) (* CellTagsIndexPosition[ 22165, 607]*) (*WindowFrame->Normal*) Notebook[{ Cell["\<\ invFactorized={{-((8*e2*r^2*(-1 + Cos[q0])*Csc[q2]^2)/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), 0, (8*e2*r^2*(-1 + Cos[q0])*Cot[q2]*Csc[q2])/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), 0, (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*Csc[q2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2)))}, {0, -((8*e2*r^2*(-1 + Cos[q0]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), 0, 0, -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*(Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[qp2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2))}, {(8*e2*r^2*(-1 + Cos[q0])*Cot[q2]*Csc[q2])/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), 0, (8*e2*r^2*Csc[q0]^2*Csc[q2]^2*(Sin[q0]^2 - Cos[q0]*Sin[q0]^2 + 4*Sin[q2]^2 \ - 4*Cos[q0]*Sin[q2]^2 - 3*Sin[q0]^2*Sin[q2]^2 + \ Cos[q0]*Sin[q0]^2*Sin[q2]^2))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), 0, -((4*e2*r^2*Csc[q0]^2*Csc[q2]*Csc[qp2]* (-2*Cos[q0/2]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 + 2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 + 2*Cos[q0/2]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] - 2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] + \ 4*Sin[q2]*Sin[qp2] - 4*Cos[q0]*Sin[q2]*Sin[qp2] - Sin[q0]^2*Sin[q2]*Sin[qp2] - Cos[q0]*Sin[q0]^2*Sin[q2]*Sin[qp2]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2))}, {0, 0, 0, -((4*e2*r^2)/(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + \ 2*Sin[F]^2))), 0, 0, 0}, {(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*Csc[q2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), -((4*e2*r^2*Csc[q0]^2*Csc[q2]*Csc[qp2]* (-2*Cos[q0/2]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 + 2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 + 2*Cos[q0/2]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] - 2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] + \ 4*Sin[q2]*Sin[qp2] - 4*Cos[q0]*Sin[q2]*Sin[qp2] - Sin[q0]^2*Sin[q2]*Sin[qp2] - Cos[q0]*Sin[q0]^2*Sin[q2]*Sin[qp2]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), 0, -((e2*r^2*Csc[q0]^2*Csc[qp2]^2*(-6*dF^2*r^2*Sin[q0]^2 - \ 24*e2*fpi2*r^2*Sin[q0]^2 + 6*dF^2*r^2*Cos[q0]*Sin[q0]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[q0]^2 - 12*Sin[F]^2*Sin[q0]^2 + 12*Cos[q0]*Sin[F]^2*Sin[q0]^2 - \ 13*dF^2*r^2*Sin[q0]^4 - 4*e2*fpi2*r^2*Sin[q0]^4 - 16*dF^2*r^2*Cos[F]*Sin[q0]^4 - 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^4 - 10*Sin[F]^2*Sin[q0]^4 - 16*Cos[F]*Sin[F]^2*Sin[q0]^4 - 32*dF^2*r^2*Sin[qp2]^2 - \ 32*e2*fpi2*r^2*Sin[qp2]^2 - 32*dF^2*r^2*Cos[F]*Sin[qp2]^2 - 32*e2*fpi2*r^2*Cos[F]*Sin[qp2]^2 + 32*dF^2*r^2*Cos[q0]*Sin[qp2]^2 + 32*e2*fpi2*r^2*Cos[q0]*Sin[qp2]^2 \ + 32*dF^2*r^2*Cos[F]*Cos[q0]*Sin[qp2]^2 + \ 32*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[qp2]^2 - 32*Sin[F]^2*Sin[qp2]^2 - 32*Cos[F]*Sin[F]^2*Sin[qp2]^2 + 32*Cos[q0]*Sin[F]^2*Sin[qp2]^2 + \ 32*Cos[F]*Cos[q0]*Sin[F]^2*Sin[qp2]^2 + 16*dF^2*r^2*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 + 16*e2*fpi2*r^2*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 + 16*dF^2*r^2*Cos[F]*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 + 16*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 + 16*Cos[q0]*Sin[F]^2*Sin[q0]^2*Sin[qp2]^2 + 16*Cos[F]*Cos[q0]*Sin[F]^2*Sin[q0]^2*Sin[qp2]^2 + \ 12*dF^2*r^2*Sin[q0]^4*Sin[qp2]^2 + 12*e2*fpi2*r^2*Sin[q0]^4*Sin[qp2]^2 + \ 12*dF^2*r^2*Cos[F]*Sin[q0]^4*Sin[qp2]^2 + 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^4*Sin[qp2]^2 + \ 12*Sin[F]^2*Sin[q0]^4*Sin[qp2]^2 + 12*Cos[F]*Sin[F]^2*Sin[q0]^4*Sin[qp2]^2))/ (4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \ Sin[q0]^2))), 0, -((e2*r^2*Cot[qp2]*Csc[qp2]*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - \ 6*dF^2*r^2*Cos[q0] - 24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + \ 13*dF^2*r^2*Sin[q0]^2 + 4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + 10*Sin[F]^2*Sin[q0]^2 + \ 16*Cos[F]*Sin[F]^2*Sin[q0]^2))/ (4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \ Sin[q0]^2)))}, {(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*(Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), 0, 0, (e2*r^2*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - 6*dF^2*r^2*Cos[q0] - \ 24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + 13*dF^2*r^2*Sin[q0]^2 + \ 4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 10*Sin[F]^2*Sin[q0]^2 + 16*Cos[F]*Sin[F]^2*Sin[q0]^2))/ (4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + Sin[q0]^2)), \ 0}, {-((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \ 2*Cos[q0] + Sin[q0]^2))), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[qp2]*(Cos[qp1]*Sin[q3] + \ Cos[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), (8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/ (Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] \ + Sin[q0]^2)), 0, -((e2*r^2*Cot[qp2]*Csc[qp2]*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - \ 6*dF^2*r^2*Cos[q0] - 24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + \ 13*dF^2*r^2*Sin[q0]^2 + 4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + 10*Sin[F]^2*Sin[q0]^2 + \ 16*Cos[F]*Sin[F]^2*Sin[q0]^2))/ (4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \ Sin[q0]^2))), 0, (e2*r^2*Csc[qp2]^2*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - 6*dF^2*r^2*Cos[q0] - \ 24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + 13*dF^2*r^2*Sin[q0]^2 + \ 4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 10*Sin[F]^2*Sin[q0]^2 + 16*Cos[F]*Sin[F]^2*Sin[q0]^2))/ (4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \ Sin[q0]^2))}};\ \>", "Input"], Cell["\<\ fullGM={{1/(48*e2*r^2)*Pi*(40*dF^2*r^2*Sin[F]^2 + 40*e2*fpi2*r^2*Sin[F]^2 + 24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 + \ 40*Sin[F]^4 + 24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 + 12*e2*fpi2*r^2*Sin[q0]^2 \ - 3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 6*Sin[F]^2*Sin[q0]^2 - 4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2 - 6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2 + \ 6*dF^2*r^2*Sin[q2]^2 + 24*e2*fpi2*r^2*Sin[q2]^2 - 6*dF^2*r^2*Cos[F]*Sin[q2]^2 - \ 24*e2*fpi2*r^2*Cos[F]*Sin[q2]^2 - 6*dF^2*r^2*Cos[q0]*Sin[q2]^2 - 24*e2*fpi2*r^2*Cos[q0]*Sin[q2]^2 + 6*dF^2*r^2*Cos[F]*Cos[q0]*Sin[q2]^2 + \ 24*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[q2]^2 + 12*Sin[F]^2*Sin[q2]^2 - 8*dF^2*r^2*Sin[F]^2*Sin[q2]^2 - \ 8*e2*fpi2*r^2*Sin[F]^2*Sin[q2]^2 - 12*Cos[F]*Sin[F]^2*Sin[q2]^2 - 12*Cos[q0]*Sin[F]^2*Sin[q2]^2 + 8*dF^2*r^2*Cos[q0]*Sin[F]^2*Sin[q2]^2 + \ 8*e2*fpi2*r^2*Cos[q0]*Sin[F]^2*Sin[q2]^2 + 12*Cos[F]*Cos[q0]*Sin[F]^2*Sin[q2]^2 - 8*Sin[F]^4*Sin[q2]^2 + 8*Cos[q0]*Sin[F]^4*Sin[q2]^2 - 3*dF^2*r^2*Sin[q0]^2*Sin[q2]^2 - 12*e2*fpi2*r^2*Sin[q0]^2*Sin[q2]^2 + \ 3*dF^2*r^2*Cos[F]*Sin[q0]^2*Sin[q2]^2 + 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2*Sin[q2]^2 - \ 6*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + 4*dF^2*r^2*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + \ 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + 6*Cos[F]*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + \ 4*Sin[F]^4*Sin[q0]^2*Sin[q2]^2), 0, 1/(48*e2*r^2)*Pi*Cos[q2]*(40*dF^2*r^2*Sin[F]^2 + 40*e2*fpi2*r^2*Sin[F]^2 + \ 24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 + \ 40*Sin[F]^4 + 24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 + 12*e2*fpi2*r^2*Sin[q0]^2 \ - 3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 6*Sin[F]^2*Sin[q0]^2 - 4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2 - 6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0, (Pi*(3 + Cos[q0])*Cos[q2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2), 1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2)*Sin[q2]* (Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1]), -(1/(3*e2*r^2)*2*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (-2*Cos[q2]*Cos[qp2] + Cos[q2]*Cos[qp2]*Sin[q0/2]^2 + 2*Cos[q0/2]*Cos[q3]*Cos[qp1]*Sin[q2]*Sin[qp2] - 2*Cos[q0/2]*Sin[q2]*Sin[q3]*Sin[qp1]*Sin[qp2]))}, {0, 1/(24*e2*r^2)*Pi*(3*dF^2*r^2 + 12*e2*fpi2*r^2 - 3*dF^2*r^2*Cos[F] - \ 12*e2*fpi2*r^2*Cos[F] - 3*dF^2*r^2*Cos[q0] - 12*e2*fpi2*r^2*Cos[q0] + \ 3*dF^2*r^2*Cos[F]*Cos[q0] + 12*e2*fpi2*r^2*Cos[F]*Cos[q0] + 6*Sin[F]^2 + 16*dF^2*r^2*Sin[F]^2 + 16*e2*fpi2*r^2*Sin[F]^2 - 6*Cos[F]*Sin[F]^2 - 6*Cos[q0]*Sin[F]^2 + 16*dF^2*r^2*Cos[q0]*Sin[F]^2 + 16*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 + 6*Cos[F]*Cos[q0]*Sin[F]^2 + 16*Sin[F]^4 + 16*Cos[q0]*Sin[F]^4), 0, 0, \ 0, 1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]), 1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1])*Sin[qp2]}, {1/(48*e2*r^2)*Pi*Cos[q2]*(40*dF^2*r^2*Sin[F]^2 + 40*e2*fpi2*r^2*Sin[F]^2 + \ 24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 + \ 40*Sin[F]^4 + 24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 + 12*e2*fpi2*r^2*Sin[q0]^2 \ - 3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 6*Sin[F]^2*Sin[q0]^2 - 4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2 - 6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0, 1/(48*e2*r^2)*Pi*(40*dF^2*r^2*Sin[F]^2 + 40*e2*fpi2*r^2*Sin[F]^2 + 24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 + \ 40*Sin[F]^4 + 24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 + 12*e2*fpi2*r^2*Sin[q0]^2 \ - 3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \ 6*Sin[F]^2*Sin[q0]^2 - 4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2 - 6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0, (Pi*(3 + Cos[q0])*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2), 0, (Pi*(3 + Cos[q0])*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2)}, {0, 0, 0, -((Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + \ 2*Sin[F]^2))/(4*e2*r^2)), 0, 0, 0}, {(Pi*(3 + Cos[q0])*Cos[q2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2), 0, (Pi*(3 + Cos[q0])*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2), 0, (4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2), 0, (4*Pi*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2)}, {1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2)*Sin[q2]* (Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1]), 1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]), 0, 0, 0, (4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2), 0}, {-(1/(3*e2*r^2)*2*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (-2*Cos[q2]*Cos[qp2] + Cos[q2]*Cos[qp2]*Sin[q0/2]^2 + 2*Cos[q0/2]*Cos[q3]*Cos[qp1]*Sin[q2]*Sin[qp2] - 2*Cos[q0/2]*Sin[q2]*Sin[q3]*Sin[qp1]*Sin[qp2])), 1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)* (Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1])*Sin[qp2], (Pi*(3 + Cos[q0])*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \ Sin[F]^2))/(3*e2*r^2), 0, (4*Pi*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2), \ 0, (4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2)}};\ \>", "Input"], Cell[BoxData[ \(\(\n (*\ This\ fails.\ Actually\ I\ multiply\ matrix\ and\ its\ inverse\ so\ there\ can\ be\ 1\ or\ 0\ elements\ only\ *) \)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Table[Print[{i, k}]; \n\t\t Simplify[Part[Dot[invFactorized\ , fullGM], i, k]], {i, 7}, {k, i, 7}] // TableForm\)], "Input"], Cell[BoxData[ \({1, 1}\)], "Print"], Cell[BoxData[ \({1, 2}\)], "Print"], Cell[BoxData[ \({1, 3}\)], "Print"], Cell[BoxData[ \({1, 4}\)], "Print"], Cell[BoxData[ \({1, 5}\)], "Print"], Cell[BoxData[ \({1, 6}\)], "Print"], Cell[BoxData[ \({1, 7}\)], "Print"], Cell[BoxData[ \({2, 2}\)], "Print"], Cell[BoxData[ \({2, 3}\)], "Print"], Cell[BoxData[ \({2, 4}\)], "Print"], Cell[BoxData[ \({2, 5}\)], "Print"], Cell[BoxData[ \({2, 6}\)], "Print"], Cell[BoxData[ \({2, 7}\)], "Print"], Cell[BoxData[ \({3, 3}\)], "Print"], Cell[BoxData[ \({3, 4}\)], "Print"], Cell[BoxData[ \({3, 5}\)], "Print"], Cell[BoxData[ \({3, 6}\)], "Print"], Cell[BoxData[ \({3, 7}\)], "Print"], Cell[BoxData[ \({4, 4}\)], "Print"], Cell[BoxData[ \({4, 5}\)], "Print"], Cell[BoxData[ \({4, 6}\)], "Print"], Cell[BoxData[ \({4, 7}\)], "Print"], Cell[BoxData[ \({5, 5}\)], "Print"], Cell[BoxData[ \({5, 6}\)], "Print"], Cell[BoxData[ \({5, 7}\)], "Print"], Cell["Out of memory. Exiting.", "Print"] }, Open ]], Cell[BoxData[ \( (*\ by\ the\ way\ one\ time\ after\ this\ exit\ I\ obtained\ message\ from\ front\ end\ \((in\ the\ separate\ window)\)\n \tthat\ \(\*"\""Resource\ \((1223)\)\ is\ out\ of\ range\ \((0 - 1046)\) \*" \""\)\ after\ that\ the\ whole\ program\ was\ shuted\ down.\ \n\t\tAlso\ the\ exit\ behaviour\ is\ completely\ reproducible \ on\ my\ Win95 \((osr1)\)\ P166, \ 32 Ram, \ 310\ swap \((exacly)\)\ *) \)], "Input"], Cell[BoxData[ \( (*\ input\ again\ matrices\ invFactorized\ , fullGM\ *) \)], "Input"], Cell[BoxData[ \( (*\ this\ now\ works\ ok\ *) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\tSimplify[Part[Dot[invFactorized\ , fullGM], 5, 7]]\)\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[BoxData[ \(Quit[]\)], "Input"], Cell[BoxData[ \( (*\ input\ again\ matrices\ invFactorized\ , fullGM\ *) \)], "Input"], Cell[BoxData[ \( (*\ this\ shows\ that\ element\ [5, 7]\ indeed\ caused\ the\ problem\ *) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Table[Print[{i, k}]; If[And[i === 5, k === 7], \n\t\t Expand[Numerator[ Together[ TrigToExp[\(Dot[invFactorized\ , fullGM]\)[\([i, k]\)]]]]], \n \t\tSimplify[Part[Dot[invFactorized\ , fullGM], i, k]]], {i, 7}, { k, i, 7}] // TableForm\)], "Input"], Cell[BoxData[ \({1, 1}\)], "Print"], Cell[BoxData[ \({1, 2}\)], "Print"], Cell[BoxData[ \({1, 3}\)], "Print"], Cell[BoxData[ \({1, 4}\)], "Print"], Cell[BoxData[ \({1, 5}\)], "Print"], Cell[BoxData[ \({1, 6}\)], "Print"], Cell[BoxData[ \({1, 7}\)], "Print"], Cell[BoxData[ \({2, 2}\)], "Print"], Cell[BoxData[ \({2, 3}\)], "Print"], Cell[BoxData[ \({2, 4}\)], "Print"], Cell[BoxData[ \({2, 5}\)], "Print"], Cell[BoxData[ \({2, 6}\)], "Print"], Cell[BoxData[ \({2, 7}\)], "Print"], Cell[BoxData[ \({3, 3}\)], "Print"], Cell[BoxData[ \({3, 4}\)], "Print"], Cell[BoxData[ \({3, 5}\)], "Print"], Cell[BoxData[ \({3, 6}\)], "Print"], Cell[BoxData[ \({3, 7}\)], "Print"], Cell[BoxData[ \({4, 4}\)], "Print"], Cell[BoxData[ \({4, 5}\)], "Print"], Cell[BoxData[ \({4, 6}\)], "Print"], Cell[BoxData[ \({4, 7}\)], "Print"], Cell[BoxData[ \({5, 5}\)], "Print"], Cell[BoxData[ \({5, 6}\)], "Print"], Cell[BoxData[ \({5, 7}\)], "Print"], Cell[BoxData[ \({6, 6}\)], "Print"], Cell[BoxData[ \({6, 7}\)], "Print"], Cell[BoxData[ \({7, 7}\)], "Print"], Cell[BoxData[ InterpretationBox[GridBox[{ {"1", "0", "0", "0", "0", "0", "0"}, {"1", "0", "0", "0", "0", "0", \(""\)}, {"1", "0", "0", "0", "0", \(""\), \(""\)}, {"1", "0", "0", "0", \(""\), \(""\), \(""\)}, {"1", "0", "0", \(""\), \(""\), \(""\), \(""\)}, {"1", "0", \(""\), \(""\), \(""\), \(""\), \(""\)}, {"1", \(""\), \(""\), \(""\), \(""\), \(""\), \(""\)} }, RowSpacings->1, ColumnSpacings->3, RowAlignments->Baseline, ColumnAlignments->{Left}], TableForm[ {{1, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0}, {1, 0}, {1}}]]], "Output"] }, Open ]], Cell[BoxData[ \(\( (*\ There\ are\ actually\ one\ more\ element\ \ in\ the\ whole\ matrix\ which\ causes\ the\ same\ problem.\ I\ am\ not\ interesting\ in\ it\ because\ both\ matrices\ are\ symetric.\ This\ is\ simply\ check\ whether\ multiplication\ of\ matrix\ and\ its\ inverse\ give\ the\ identity\ matrix\ *) \ \)\)], "Input"] }, FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 800}, {0, 544}}, WindowSize->{464, 404}, WindowMargins->{{79, Automatic}, {Automatic, 5}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 8856, 175, 1920, "Input"], Cell[10568, 226, 5792, 111, 1344, "Input"], Cell[16363, 339, 173, 3, 50, "Input"], Cell[CellGroupData[{ Cell[16561, 346, 161, 3, 50, "Input"], Cell[16725, 351, 39, 1, 25, "Print"], Cell[16767, 354, 39, 1, 25, "Print"], Cell[16809, 357, 39, 1, 25, "Print"], Cell[16851, 360, 39, 1, 25, "Print"], Cell[16893, 363, 39, 1, 25, "Print"], Cell[16935, 366, 39, 1, 25, "Print"], Cell[16977, 369, 39, 1, 25, "Print"], Cell[17019, 372, 39, 1, 25, "Print"], Cell[17061, 375, 39, 1, 25, "Print"], Cell[17103, 378, 39, 1, 25, "Print"], Cell[17145, 381, 39, 1, 25, "Print"], Cell[17187, 384, 39, 1, 25, "Print"], Cell[17229, 387, 39, 1, 25, "Print"], Cell[17271, 390, 39, 1, 25, "Print"], Cell[17313, 393, 39, 1, 25, "Print"], Cell[17355, 396, 39, 1, 25, "Print"], Cell[17397, 399, 39, 1, 25, "Print"], Cell[17439, 402, 39, 1, 25, "Print"], Cell[17481, 405, 39, 1, 25, "Print"], Cell[17523, 408, 39, 1, 25, "Print"], Cell[17565, 411, 39, 1, 25, "Print"], Cell[17607, 414, 39, 1, 25, "Print"], Cell[17649, 417, 39, 1, 25, "Print"], Cell[17691, 420, 39, 1, 25, "Print"], Cell[17733, 423, 39, 1, 25, "Print"], Cell[17775, 426, 41, 0, 25, "Print"] }, Open ]], Cell[17831, 429, 496, 9, 90, "Input"], Cell[18330, 440, 90, 1, 30, "Input"], Cell[18423, 443, 63, 1, 30, "Input"], Cell[CellGroupData[{ Cell[18511, 448, 89, 1, 30, "Input"], Cell[18603, 451, 35, 1, 29, "Output"] }, Open ]], Cell[18653, 455, 39, 1, 30, "Input"], Cell[18695, 458, 90, 1, 30, "Input"], Cell[18788, 461, 121, 3, 30, "Input"], Cell[CellGroupData[{ Cell[18934, 468, 336, 7, 70, "Input"], Cell[19273, 477, 39, 1, 25, "Print"], Cell[19315, 480, 39, 1, 25, "Print"], Cell[19357, 483, 39, 1, 25, "Print"], Cell[19399, 486, 39, 1, 25, "Print"], Cell[19441, 489, 39, 1, 25, "Print"], Cell[19483, 492, 39, 1, 25, "Print"], Cell[19525, 495, 39, 1, 25, "Print"], Cell[19567, 498, 39, 1, 25, "Print"], Cell[19609, 501, 39, 1, 25, "Print"], Cell[19651, 504, 39, 1, 25, "Print"], Cell[19693, 507, 39, 1, 25, "Print"], Cell[19735, 510, 39, 1, 25, "Print"], Cell[19777, 513, 39, 1, 25, "Print"], Cell[19819, 516, 39, 1, 25, "Print"], Cell[19861, 519, 39, 1, 25, "Print"], Cell[19903, 522, 39, 1, 25, "Print"], Cell[19945, 525, 39, 1, 25, "Print"], Cell[19987, 528, 39, 1, 25, "Print"], Cell[20029, 531, 39, 1, 25, "Print"], Cell[20071, 534, 39, 1, 25, "Print"], Cell[20113, 537, 39, 1, 25, "Print"], Cell[20155, 540, 39, 1, 25, "Print"], Cell[20197, 543, 39, 1, 25, "Print"], Cell[20239, 546, 39, 1, 25, "Print"], Cell[20281, 549, 39, 1, 25, "Print"], Cell[20323, 552, 39, 1, 25, "Print"], Cell[20365, 555, 39, 1, 25, "Print"], Cell[20407, 558, 39, 1, 25, "Print"], Cell[20449, 561, 714, 16, 120, "Output"] }, Open ]], Cell[21178, 580, 378, 6, 130, "Input"] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)