Fourier Transform PDF Characteristic Function
- To: mathgroup at smc.vnet.net
- Subject: [mg14955] Fourier Transform PDF Characteristic Function
- From: "Yves Gauvreau" <gauy at videotron.ca>
- Date: Fri, 27 Nov 1998 03:49:53 -0500
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I'm trying to find the PDF from a Characteristic Function using Mathematica. I'm not a mathematician just a curious guy. Here is the problem (this is a paste from the notebook). ---------------------------------------------------------------------------- -------------------------------------------------------- Load the needed packages <<Statistics`NormalDistribution` <<Calculus`FourierTransform` This is the CharacteristicFunction of a NormalDistribution In[3]:= CF=CharacteristicFunction[NormalDistribution[\[Mu],\[Sigma]],t] Out[3]= \!\(E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\)\) Also this is suppose to be the FourierTransform of a NormalDistribution PDF In[5]:= ft=FourierTransform[PDF[NormalDistribution[\[Mu],\[Sigma]],x],x,t] Out[5]= \!\(E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\)\) Now with the InverseFourierTransform we are suppose to get back the NormalDistribution PDF In[6]:= InverseFourierTransform[ft,t,x] Out[6]= \!\(InverseFourierTransform[E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\), t, x]\) As you can see it doesn't give back the NormalDistribution PDF even if I use the constant In[7]:= InverseFourierTransform[ft,t,x,FourierOverallConstant->1/ 2 Pi] Out[7]= \!\(InverseFourierTransform[E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\), t, x, FourierOverallConstant \[Rule] \[Pi]\/2]\) Or if I manualy try the integral In[8]:= 1/2 Pi Integral[ft Exp[I t x],{t,-Infinity,Infinity}] Out[8]= \!\(\* RowBox[{\(1\/2\), " ", "\[Pi]", " ", RowBox[{"Integral", "[", RowBox[{ \(E\^\(I\ t\ x + I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\)\), ",", RowBox[{"{", RowBox[{"t", ",", InterpretationBox[\(-\[Infinity]\), DirectedInfinity[ -1]], ",", InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]}], "}"}]}], "]"}]}]\) I even tried to split the function in Even and Odd parts In[9]:= \!\(f[x_] := E\^\(I\ x\ \[Mu] - \(x\^2\ \[Sigma]\^2\)\/2\); \n\n G[x_] := \ 1/2\ \((f[x] + f[\(-x\)])\)\n H[x_] := \ 1/2\ \((f[x] - f[\(-x\)])\)\) In[11]:= \!\(\[Integral]\_\(-\[Infinity]\)\%\[Infinity] G[x] Cos[2\ Pi\ t\ x] \[DifferentialD]x\ - I\ \(\[Integral]\_\(-\[Infinity]\)\%\[Infinity] H[x] Sin[2\ Pi\ t\ x] \[DifferentialD]x\)\) Out[11]= \!\(\* RowBox[{ RowBox[{\(-I\), " ", RowBox[{"If", "[", RowBox[{ \(Im[2\ \[Pi]\ t - \[Mu]] == 0 && Im[2\ \[Pi]\ t + \[Mu]] == 0 && Re[\[Sigma]\^2] > 0\), ",", \(\(I\ \(( E\^\(-\(\((\(-2\)\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\) - E\^\(-\(\((2\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\))\)\ \ at \(\[Pi]\/2\)\)\/\ at \[Sigma]\^2\), ",", RowBox[{ SubsuperscriptBox["\[Integral]", InterpretationBox[\(-\[Infinity]\), DirectedInfinity[ -1]], InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(1\/2\ \((\(-E\^\(\(-I\)\ x\ \[Mu] - \(x\^2\ \[Sigma]\^2\)\/2\)\) + E\^\(I\ x\ \[Mu] - \(x\^2\ \[Sigma]\^2\)\/2\))\)\ Sin[2\ \[Pi]\ t\ x]\) \[DifferentialD]x\)}]}], "]"}]}], "+", RowBox[{"If", "[", RowBox[{ \(Im[2\ \[Pi]\ t - \[Mu]] == 0 && Im[2\ \[Pi]\ t + \[Mu]] == 0 && Re[\[Sigma]\^2] > 0\), ",", \(\(\((E\^\(-\(\((\(-2\)\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\) + E\^\(-\(\((2\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\))\)\ \ at \(\[Pi]\/2\)\)\/\ at \[Sigma]\^2\), ",", RowBox[{ SubsuperscriptBox["\[Integral]", InterpretationBox[\(-\[Infinity]\), DirectedInfinity[ -1]], InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(1\/2\ \((E\^\(\(-I\)\ x\ \[Mu] - \(x\^2\ \[Sigma]\^2\)\/2\) + E\^\(I\ x\ \[Mu] - \(x\^2\ \[Sigma]\^2\)\/2\))\)\ Cos[2\ \[Pi]\ t\ x]\) \[DifferentialD]x\)}]}], "]"}]}]\) Here I took what seemed to be the real part \!\(fs = \(\(( E\^\(-\(\((\(-2\)\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\) + E\^\(-\(\((2\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\))\)\ \ at \(\[Pi]\/2\)\)\/\ at \[Sigma]\^2\) Out[15]= \!\(\(\((E\^\(-\(\((\(-2\)\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\) + E\^\(-\(\((2\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\))\)\ \ at \(\[Pi]\/2\)\)\/\ at \[Sigma]\^2\) This is a simple verification In[21]:= fs/.{\[Mu]->0,\[Sigma]->1,t->0} Out[21]= \!\(\ at \(2\ \[Pi]\)\) In[22]:= PDF[NormalDistribution[\[Mu],\[Sigma]],t]/.{\[Mu]->0,\[Sigma]->1,t->0} Out[22]= \!\(1\/\ at \(2\ \[Pi]\)\) And as you can see it doesn't come close In[23]:= \!\(\[Integral]\_\(-\[Infinity]\)\%\[Infinity] fs \[DifferentialD]t\) Out[23]= \!\(\* RowBox[{"If", "[", RowBox[{ \(Re[\[Mu]\/\[Sigma]\^2] > 0 && Re[\[Sigma]\^2] > 0\), ",", "1", ",", RowBox[{ SubsuperscriptBox["\[Integral]", InterpretationBox[\(-\[Infinity]\), DirectedInfinity[ -1]], InterpretationBox["\[Infinity]", DirectedInfinity[ 1]]], \(\(\(\((E\^\(-\(\((\(-2\)\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\) + E\^\(-\(\((2\ \[Pi]\ t + \[Mu])\)\^2\/\(2\ \[Sigma]\^2\)\)\))\)\ \ at \(\[Pi]\/2\)\)\/\ at \[Sigma]\^2\) \[DifferentialD]t\)}]}], "]"}]\) I ploted fs and it's not even close but it looks Gaussian In[28]:= Plot[fs/.{\[Mu]->0,\[Sigma]->1},{t,-3,3},PlotRange->All] My question is can someone tell me what I'm doing wrong ? The actual characteristic function I'd like to find the PDF for goes like this and I can't find it as well. \!\(Exp[\(c\^\[Alpha]\/Cos[\(\[Pi]\ \[Alpha]\)\/2]\) \((\(\((t\^2 + \[Lambda]\^2)\)\^\(\[Alpha]\/2\)\) Cos[\[Alpha]\ ArcTan[t\/\[Lambda]]] - \[Lambda]\^\[Alpha])\)]\) \[Alpha]\[NotEqual]1 c, \[Lambda] and \[Alpha] are real constant ---------------------------------------------------------------------------- ---------------------------------------------------------- Hope someone can help Thanks, Yves Gauvreau