Re: binomial distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg16992] Re: binomial distribution
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Sat, 10 Apr 1999 02:13:31 -0400
- Organization: University of Western Australia
- References: <7e9ohv$3kq@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Robert Wright wrote: > Can someone explain how I can solve for 'c' or 'n' given the other variables > in this equation: its the binomial form for calculation the operating > characteristic in acceptance sampling. The problem is that 'c' and 'n' are > discrete and therefore 'Findroot' or 'NSolve' do not work. > > The other problem is that it takes a long time to evaluate 'PrBinomial' for > large 'c' and 'n'.... is there a better way of calculating? > > \!\(PrBinomial[c_, \ n_, p_] := \ > Sum[\ Binomial[n, k]\ \(\((1 - p)\)\^k\) p\^\(n - k\), {k, 0, c}] // N\) Firstly, note that Mathematica can compute the sum in closed form: In[1]:= pr[c_, n_, p_] = PowerExpand[FunctionExpand[ Simplify[Sum[Binomial[n, k]*(1 - p)^k*p^(n - k), {k, 0, c}]]]] Out[1]= -c + n - 1 ((p - 1) p Gamma[n + 1] p - 1 c Hypergeometric2F1[1, c - n + 1, c + 2, -----] (1 - p) )\ p / (Gamma[c + 2] Gamma[n - c]) + 1 Numerical evaluation is now fast: In[2]:= pr[1000, 1200, 0.3] Out[2]= 0.999999999999999999999999994237542093921128937699427244989 In[3]:= pr[1000, 1500, 0.3] Out[3]= 0.002844110551587560144702272926909 You can then plot this (continuous) function, e.g., In[4]:= Plot[Evaluate[pr[15, n, 0.6]], {n, 16, 60}]; Evaluate is used so that the expression is only computed once. You can then use FindRoot to determine, say, n given c and p: In[3]:= FindRoot[Evaluate[pr[15, n, 0.6]] == 0.8, {n, 20, 21}] Out[3]= {n -> 32.8623} Of course, you then need to round this result. Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://www.physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________