Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1999
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1999

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: plotting time data

  • To: mathgroup at smc.vnet.net
  • Subject: [mg19005] Re: plotting time data
  • From: king at dircon.co.uk (Nigel King)
  • Date: Tue, 3 Aug 1999 13:44:44 -0400
  • Organization: Consultant
  • References: <7nretf$idn@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

James L. Fisher <jlfisher at imt.net> wrote:

> I would like to plot some time data where I have the dates and/or times on
> the horizontal axis and the data on the vericle axis.  What software would
> I have to get inorder to plot this data over time. The data should be
> plotted as points with a line joining the points. Getting the horizontal to
> be labeled with the time and/or date is the trouble . I could use ListPlot
> otherwise. 
> 
> Thanks
> James
I wrote these routines which deal with dates but haven't extended them
to times. I hope that you can find them useful. I am not sure they are
entirely campatible with v4. as you can see from 2.2 below they have
been araound for some time. It would be nice if some nice person at
wolfram would take them on and incorporate something as good if not
better into Graphics`Graphics`.

(*:Mathematica Version: 2.2 *)

(*:Package Version: 0.2 *)

(*:Name: DateFunctions *)

(*:Context: NigelsPacks`DateFunctions` *)

(*:Title: 
      Additional Date Functions for plotting graphs with dates on the
bottom 
          Axis-Improvements to Log Axis control also achieved *)

(*:Authors: Nigel King *)

(*:Summary:
*)

(*:Copyright: Dropped *)

(*:History:
        New package designed Jan 1999
*)

(* :Keywords: 
        DatePlot, DateLogPlot, DateLogListPlot, DateListPlot, DateScale,
DateString, 
  LogScale
*)

(* :Sources:
*)

(* :Warning: None*)

(* :Mathematica Version: 3.0.1 *)

(*
*)

(* :Limitation:
*)

(* :Discussion:  
*)

Needs["Graphics`Graphics`"]
BeginPackage["NigelsPacks`DateFunctions`"]
EndPackage[]

BeginPackage["Graphics`Graphics`",
                        {"Graphics`Common`GraphicsCommon`"}]

DatePlot::usage=
  "DatePlot[f, {x, xmin, xmax}] generates a plot of f as a function of x
from \
xmin to xmax where x is in seconds";
DateLogPlot::usage=
  "DateLogPlot[f, {x, xmin, xmax}] generates a plot of Log[f] as a
function \
of x in seconds converted to dates";
DateLogListPlot::usage="DateLogListPlot[{y1, y2, ...}]";
DateListPlot::usage=
  "DateListPlot[{y1, y2, ... }] plots a list of values (not very useful
for \
dates). The x coordinates for each point are taken to be 1, 2, ... . \
ListPlot[{{x1, y1}, {x2, y2}, ... }] plots a list of values with
specified x \
and y coordinates where the x values are dates in seconds.";
DateScale::usage=
  "DateScale[xmin, xmax, n] gives a list of \"nice\" dates between xmin
and \
xmax";
DateString::usage=
  "DateString[dateInSeconds] produce the string form of a date currently
in \
the compact form \"dmmmyy\"";

Begin["`Private`"]

SetAttributes[{DateLogPlot}, HoldFirst];
Options[DatePlot] = Options[DateLogPlot]= Options[ParametricPlot];
Options[DateLogListPlot] =Options[DateListPlot] = Options[ListPlot];

DatePlot[fun_, range_, opts___]:=       
  Plot[fun,range,
                Evaluate[tickopts[DateScale, Automatic,
                         DatePlot, {#&,#&}, Flatten[{opts}]]],
                opts,
                Evaluate[Options[DatePlot]]
        ]

DateLogPlot[fun_,range_,opts___] :=
        ScaledPlot[fun,range,
                ScaleFunction -> {#&, Log[10,#]&},
                tickopts[DateScale, LogScale,
                         DateLogPlot, {#&, Log[10,#]&},
Flatten[{opts}]],
                scaleplotrange[DateLogPlot, Flatten[{opts}]],
                opts,
                Options[DateLogPlot]
        ]

DateLogListPlot[data_, opts___]:=
        ScaledListPlot[data,
                ScaleFunction -> {#&, Log[10,#]&},
                tickopts[DateScale, LogScale,
                         DateLogListPlot, {#&, Log[10,#]&},
Flatten[{opts}]],
                scaleplotrange[DateLogListPlot, Flatten[{opts}]],
                opts,
                Options[DateLogListPlot]
        ]

DateListPlot[data_, opts___]:=
  ListPlot[data,
                Evaluate[tickopts[DateScale, Automatic,
                         DatePlot, {#&,#&}, Flatten[{opts}]]],
                opts,
                Evaluate[Options[DateListPlot]]
        ]

scaleplotrange[type:(DateLogPlot |DateLogListPlot),
                opts_] :=
        PlotRange -> Replace[PlotRange/.opts/.Options[type],
                        {{x:(_List | _Symbol), y:(_List | _Symbol)} :>
{x,log10[y]},
                        y_List :> log10[y]}]

DateScale[minimum_,maximum_,n_Integer:8]:=
  Module[{w,r=maximum-minimum,spacing},
        spacing=r/n;
        w=First[Select[{1,2,3,7,14,31,62,92,123,184,366,2 366,
                3 366,4 366,5 366}*24*60*60,
                        (spacing <= #)&]];

If[w<28*24*60*60,Map[DateTicks,Range[Round[minimum/w]*w,maximum,w]],
        d1={};
        For[i=iMonth[minimum,w],i<maximum,i=iMonth[i+w],AppendTo[d1,i]];
        Map[DateTicks,d1]]]

DateString[x_]:=
        Module[{d=ToDate[Evaluate[Round[x]]]},
                ToString[d[[3]]]<>""<>

StringTake["JanFebMarAprMayJunJulAugSepOctNovDec",

{d[[2]]*3-2,d[[2]]*3}]<>""<>ToString[Mod[d[[1]],100]]]

DateTicks[x_]:={x,DateString[x]};

iMonth[x_]:=Module[{y=ToDate[Round[x]]},y=FromDate[{y[[1]],y[[2]],1,0,0,
0}]];

iMonth[x_,w_]:=Module[{y=ToDate[Round[x]],w1=Round[w/24/60/60/30]},
        y=FromDate[{y[[1]],Round[y[[2]]/w1]w1+1,1,0,0,0}]];

GenGrid[min_, max_, n_Integer:6] :=
    Module[{nmin=N[min], nmax=N[max], imin, imax, nper, t, tl} ,
        imin=Round[nmin]-1 ;
        imax=Round[nmax]+1 ;
        (*If[imin == imax, imax+=1];*)
        nper = Floor[n/(max - min)] ;
        If[nper > 0,
                t = 10.^Range[imin, imax] ;
                tl = Take[ $LogPreferences,
                        Min[nper, Length[$LogPreferences]] ] ;
                t = Flatten[Outer[Times, t, tl]] ;
                t = Sort[t];
      t=Map[#[[2]]&,
          Select[Partition[t,3,1],#[[3]]>=10^min&&#[[1]]<=10^max&]] ,
                (* else *)
                nper = Ceiling[(imax - imin)/n] ;
                t = 10.^Range[imin, imax, nper]
        ] ;
        Map[ If[ Log[10., #] < 5 && # == Round[#] , Round[#], #,#]&, t]
    ]

MinorLogTicks[pts_] :=
    Flatten[ 
    Map[ MinorAux2,
      Map[{#[[1]],
            If[#[[2]]/#[[1]]<15,

MinorAux1[#[[2]]-#[[1]]],{Times,10,Log[10,#[[2]]/#[[1]]]}]}&,
        Partition[pts,2,1]]],
         1
   ]

MinorAux2[{xst_,{fun_,del_ ,n_}}]:=
  Module[{x= xst,pts},pts=Table[x=fun[x,del],{n-1}] ;
    Map[{Log[10., #],"",{0.6/160.,0.},{Thickness[0.001]}}&,pts]]
 
MinorAux1[x_] := {Plus,x /#, #}&[RealDigits[ N[Rationalize[x]] ][[1,1]]]

$LogPreferences = {1, 5, 2, 3, 1.5, 7, 4, 6, 1.2, 8, 9,
2.5,3.5,4.5,1.1, 
    1.3,
1.4,1.7,5.5,6.5,7.5,8.5,9.5,1.6,1.8,1.9,2.2,2.7,3.2,3.7,4.2,4.7};
End[ ]
EndPackage[ ]






 


  • Prev by Date: Controlling GIF size
  • Next by Date: Re: Removing Graphics3D polygon edges
  • Previous by thread: Re: plotting time data
  • Next by thread: Re: loading combinatorica