Re: circumference of an ellipse
- To: mathgroup at smc.vnet.net
- Subject: [mg19390] Re: circumference of an ellipse
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Mon, 23 Aug 1999 13:57:08 -0400
- References: <7p017c$778@smc.vnet.net> <7p301g$anl@smc.vnet.net> <7pl5l0$cch@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Stephen, Yes, and I should have used quartercircumference[a_, b_] := Integrate[Sqrt[D[a Cos[t], t]^2 + D[b Sin[t], t]^2], {t, 0, Pi/2}, Assumptions -> {a > 0, b > 0}] quartercircumference[a, b] If[Arg[b^2/a^2] != Pi, -((b*MeijerG[{{1/2, 3/2}, {}}, {{0, 1}, {}}, a^2/b^2])/(2*Pi)), Integrate[Sqrt[b^2*Cos[t]^2 + a^2*Sin[t]^2], {t, 0, Pi/2}]] But now we see that Mathematica does not deduce that if a and be are positive then b^2/a^2 cannot be negative. We clearly need %[[2]] -((b*MeijerG[{{1/2, 3/2}, {}}, {{0, 1}, {}}, a^2/b^2])/(2*Pi)) Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 Stephen P Luttrell <luttrell at signal.dra.hmg.gb> wrote in message news:7pl5l0$cch at smc.vnet.net... > Allan Hayes <hay at haystack.demon.co.uk> wrote in message > news:7p301g$anl at smc.vnet.net... > > Marcel, > > > > circumference[a_, b_] := > > Integrate[Sqrt[D[a Cos[t], t]^2 + D[b Sin[t], t]^2], {t, 0, 2Pi}] > > > >... > > (Preamble: I have $Version = "4.0 for Microsoft Windows (April 21, 1999)") > > I agree with this parametric solution, but it exposes a bug in Mathematica > when you evaluate the following symbolic expression: > > circumference[a, b] > > This gives zero! > > Furthermore, if you define > > halfcircumference[a_, b_] := > Integrate[Sqrt[D[a Cos[t], t]^2 + D[b Sin[t], t]^2], {t, 0, Pi}] > > and then evaluate halfcircumference[a, b], you get "Infinite expression 1/0 > encountered". > > > Steve Luttrell > Signal Processing and Imagery Department > DERA Malvern, St.Andrew's Road > Malvern, United Kingdom, WR14 3PS > > +44 (0)1684 894046 (tel) > +44 (0)1684 894384 (fax) > luttrell at signal.dera.gov.uk (email) > > >