Re: Fitting with a complex equation
- To: mathgroup at smc.vnet.net
- Subject: [mg18668] Re: [mg18403] Fitting with a complex equation
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Thu, 15 Jul 1999 01:45:53 -0400
- Organization: University of Western Australia
- References: <199907070411.AAA21525@smc.vnet.net.> <7m1889$5i0$11@dragonfly.wolfram.com>
- Sender: owner-wri-mathgroup at wolfram.com
Gibum wrote: > I'm having a trouble with the determining parameters of the equation with > the experimental data. > This is my equation. > > f(x)=Abs[A/(wa-x-I Ga)+k E^(I t)]^2 It is a good idea to simplify this explicitly real expression before proceeding any further. In the code below, FindMinimum is using the secant method because the required derivatives cannot be computed in closed form (because of the Abs[] in f(x)). The following short Notebook shows one way to compute and simplify f(x) Notebook[{ Cell[BoxData[ \(TraditionalForm\`\(x_\^*\) := x /. \[InvisibleSpace]Complex[a_, b_] :> Complex[a, \(-b\)]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`\(\((A\/\(wa - x - \[ImaginaryI]\ Ga\) + \ \[ExponentialE]\^\(\[ImaginaryI]\ t\)\ k)\)\^*\) \((A\/\(wa - x - \ \[ImaginaryI]\ Ga\) + \[ExponentialE]\^\(\[ImaginaryI]\ t\)\ k)\) // Expand\)], "Input"], Cell[BoxData[ \(TraditionalForm\`A\^2\/\(\((\(-\[ImaginaryI]\)\ Ga + wa - x)\)\ \((\ \[ImaginaryI]\ Ga + wa - x)\)\) + \(\[ExponentialE]\^\(\(-\[ImaginaryI]\)\ \ t\)\ k\ A\)\/\(\(-\[ImaginaryI]\)\ Ga + wa - x\) + \(\[ExponentialE]\^\(\ \[ImaginaryI]\ t\)\ k\ A\)\/\(\[ImaginaryI]\ Ga + wa - x\) + k\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`Simplify /@ \(Factor /@ Collect[ComplexExpand[%, TargetFunctions -> {Re, Im}], \((Ga\^2 + \((wa - x)\)\^2)\)]\)\)], "Input"], Cell[BoxData[ \(TraditionalForm\`A\^2\/\(Ga\^2 + \((wa - x)\)\^2\) + \(2\ k\ \((\((wa - \ x)\)\ \(cos(t)\) + Ga\ \(sin(t)\))\)\ A\)\/\(Ga\^2 + \((wa - x)\)\^2\) + k\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`Collect[%, \((Ga\^2 + \((wa - x)\)\^2)\)]\)], \ "Input"], Cell[BoxData[ \(TraditionalForm\`k\^2 + \(A\^2 + 2\ k\ \((\((wa - x)\)\ \(cos(t)\) + Ga\ \ \(sin(t)\))\)\ A\)\/\(Ga\^2 + \((wa - x)\)\^2\)\)], "Output"] }, Open ]] } ] Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________
- References:
- Fitting with a complex equation
- From: "Gibum Kim" <gibumk@tamu.edu>
- Fitting with a complex equation