Re: differentiation of cross products
- To: mathgroup at smc.vnet.net
- Subject: [mg16516] Re: [mg16419] differentiation of cross products
- From: BobHanlon at aol.com
- Date: Tue, 16 Mar 1999 03:59:58 -0500
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 3/13/99 8:14:21 AM, trotts at ucdavis.edu writes: >Can anyone tell me how to differentiate the cross product >of two vector-valued functions in Mathematica? >The input > >D[Cross[g[t],h[t]],t] > >results in the output > >h'[t] Cross^(0,1)[g[t], h[t]] + g'[t] Cross^(1,0)[g[t], h[t]] > >which is not correct. The correct answer would be > >Cross[g'[t], h[t]] + Cross[g[t], h'[t]] > >I also tried > >(Cross[g[#],h[#]]&)' > >which gave me the following incorrect output: > >Cross^(1,0)[g[#1], h[#1]] g'[#1] + Cross^(0,1)[g[#1], h[#1]] h'[#1] & > >Please tell me if you know of a good way to deal with >this problem. > Issac, D[Cross[g[t],h[t]],t] Derivative[1][h][t]*Derivative[0, 1][Cross][g[t], h[t]] + Derivative[1][g][t]*Derivative[1, 0][Cross][g[t], h[t]] g[t_] := {x1[t], y1[t], z1[t]}; h[t_] := {x2[t], y2[t], z2[t]}; D[Cross[g[t], h[t]], t] == Cross[g'[t], h[t]] + Cross[g[t], h'[t]] True Unprotect[Cross]; Cross /: D[Cross[r_, s_], z_] := Cross[D[r, z], s] + Cross[r, D[s, z]]; Protect[Cross]; Clear[g, h]; D[Cross[g[t], h[t]], t] Cross[g[t], Derivative[1][h][t]] + Cross[Derivative[1][g][t], h[t]] Bob Hanlon