MathGroup Archive 1999

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: mathematica:- question ?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg16622] Re: [mg16525] mathematica:- question ?
  • From: BobHanlon at aol.com
  • Date: Fri, 19 Mar 1999 12:53:49 -0500
  • Sender: owner-wri-mathgroup at wolfram.com

In a message dated 3/16/99 6:53:41 PM, alex_punnoose at my-dejanews.com writes:

>How do you tell Mathematica that $a > 0$ in for example the following
>integral:
>
>Integrate[Sin[x],{x,0,a}];
>
>Similarly, it is sometimes necessary to define that $a$ is Real, or
Imaginary,
>or whatever ...
>

Alex,

The example which you gave does not require any assumptions about a

Integrate[Sin[x],{x,0,a}]

1 - Cos[a]

However, for other integrals

Integrate[x^n * Exp[-a*x], {x, 0, a}]

If[a > 0 && Re[n] > -1, a^(-1 - n)*
   (Gamma[1 + n] - Gamma[1 + n, a^2]), 
  Integrate[x^n/E^(a*x), {x, 0, a}]]

You can either provide the appropriate assumptions

Integrate[x^n * Exp[-a*x], {x, 0, a}, 
Assumptions -> {a > 0, Re[n] > -1}]

a^(-1 - n)*(Gamma[1 + n] - Gamma[1 + n, a^2])

SetOptions[Integrate,
	Assumptions -> {a > 0, Re[n] > -1}];
Integrate[x^n * Exp[-a*x], {x, 0, a}]
SetOptions[Integrate,Assumptions -> {}]; (* Reset *)

a^(-1 - n)*(Gamma[1 + n] - Gamma[1 + n, a^2])

or you can turn off GenerateConditions

Integrate[x^n * Exp[-a*x], {x, 0, a}, 
GenerateConditions -> False]

a^(-1 - n)*(Gamma[1 + n] - Gamma[1 + n, a^2])

SetOptions[Integrate, GenerateConditions -> False];
Integrate[x^n * Exp[-a*x], {x, 0, a}]
SetOptions[Integrate, 
	GenerateConditions -> Automatic]; (* Reset *)

a^(-1 - n)*(Gamma[1 + n] - Gamma[1 + n, a^2])


Bob Hanlon


  • Prev by Date: AWOL message?
  • Next by Date: Re: Gettting Rid of units
  • Previous by thread: Re: mathematica:- question ?
  • Next by thread: symbolic integration - algorithms used