Re: Out[1]=((5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) == 1/2 ???
- To: mathgroup at smc.vnet.net
- Subject: [mg20027] Re: [mg19976] Out[1]=((5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) == 1/2 ???
- From: "Mark E. Harder" <harderm at ucs.orst.edu>
- Date: Sat, 25 Sep 1999 02:40:51 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Patrick, Further Food For Thought: In[4]:=Sqrt[5]/20 ==Sqrt[5.]/20 Out[4]= True Judging from your error msg. (which reproduced in my Mathematica 3.0.2, Win NT system), Mathematica fails when it tries to evaluate Sqrt[5] in finite precision and make the comparison in your expression, but it will do that in the above. Using N[ expr, $MachinePrecision], however, is error free: In :=N[( (5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) ,$MachinePrecision] Out:=0.5 In:=N[( (5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) ,$MachinePrecision]== 1/2 Out:=True But I'm not sure just why or how it makes these decisions. -mark From: Patrick McLean <p_mclean at postoffice.utas.edu.au> To: mathgroup at smc.vnet.net Subject: [mg20027] [mg19976] Out[1]=((5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) == 1/2 ??? >Can any one explain this behaviour??? > >hilbert% math >Mathematica 3.0 for Solaris >Copyright 1988-96 Wolfram Research, Inc. > -- Terminal graphics initialized -- > >In[1]:= ( (5-Sqrt[5])/20 + (5+Sqrt[5])/20 ) == 1/2 > >$MaxExtraPrecision::meprec: > $MaxExtraPrecision = 50. reached while evaluating > 1 5 - Sqrt[5] 5 + Sqrt[5] > -(-) + ----------- + -----------. Increasing the value of > 2 20 20 > $MaxExtraPrecision may help resolve the uncertainty. > > 5 - Sqrt[5] 5 + Sqrt[5] 1 >Out[1]= ----------- + ----------- == - > 20 20 2 > >In[2]:= > >-- >Patrick McLean > >No news is good news... >