Integrating Unit Step Functions (Convolution)
- To: mathgroup at smc.vnet.net
- Subject: [mg22926] Integrating Unit Step Functions (Convolution)
- From: Roger Jones <rmj at slac.stanford.edu>
- Date: Thu, 6 Apr 2000 02:04:43 -0400 (EDT)
- Organization: Stanford Linear Accelerator Center
- Sender: owner-wri-mathgroup at wolfram.com
In mathematica 3.1 the convolution of II[x], (the "Top Hat" function) with itself gives (the Triangle function): In[]=Simplify[Integrate[ II[u] II[x-u],{u,-Infinity,Infinity}]= Out[]=(-1 + x) UnitStep[-1 + x] - 2 x UnitStep[x] + (1 + x) UnitStep[1 + x] whereas Mathematica 4.0 gives: Out[]= 1 If[- + x < 0, (-1 + x) UnitStep[-1 + x] - 2 2 x UnitStep[x] + (1 + x) UnitStep[1 + x], 1 Integrate[(-UnitStep[-(-) + u] + 2 1 UnitStep[- + u]) 2 1 1 (-UnitStep[-(-) - u + x] + UnitStep[- - u + x]) 2 2 , {u, -Infinity, Infinity}]] Is there some bug in Mathematica 4.0 or perhaps there is some options I should apply for this integral? By hand, Mathematica 3.1 gives the correct result. -Roger Jones