Re: Re: ArcCos[]
- To: mathgroup at smc.vnet.net
- Subject: [mg24837] Re: [mg24815] Re: ArcCos[]
- From: Andrzej Kozlowski <andrzej at tuins.ac.jp>
- Date: Tue, 15 Aug 2000 03:04:08 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
I think you solved a differnt problem from the one Gianluca had in mind. In his case, I think, the correct answer is: In[1]:= a=Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1]; In[2]:= b = Numerator[D[a, t]] Out[2]= 2 3 1 - 4 t Root[-t + 2 #1 + 2 t #1 + #1 & , 1] In[3]:= FindRoot[Evaluate[b==0],{t,1}] Out[3]= {t -> 1.01505} In[4]:= FindRoot[Evaluate[b==0],{t,-1}] Out[4]= {t -> -1.01505} -- Andrzej Kozlowski Toyama International University, JAPAN For Mathematica related links and resources try: <http://www.sstreams.com/Mathematica/> on 8/14/00 5:49 AM, John D. Hendrickson at jdh at hend.net wrote: > I've got Mathematica 4.0.2.0. Since I'm running Win95 I don't mind > crashing - thats pretty much a constant, so I tried your dare:) But mine > didn't crash - it gave me output. Also - I have a substitute that might be > what you want. > > In[1]:= > a = Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1]; > > In[2]:= > b = D[a, t]; > > In[4]:= > InputForm[ Solve[b == 0, t] ] > > Solve::"tdep": "The equations appear to involve the variables to be solved \ > for in an essentially non-algebraic way." > > Out[4]//InputForm= > Solve[(1 - 4*t*Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1])/ > (2 + 2*t^2 + 3*Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1]^ > 2) == 0, t] > > =================================================================== > Would the following be acceptible in your circumstance? > I assumed by making the unexplicit root object explicit: > ==================================================================== > > In[3]:= > Exit[] > > In[1]:= > a = Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1]; > > In[2]:= > ax = First[a][x] > > Out[2]= > \!\(\(-t\) + 2\ x + 2\ t\^2\ x + x\^3\) > > In[3]:= > b = D[ax, t]; > > In[4]:= > InputForm[ Solve[b == 0, t] ] > > Out[4]//InputForm= > {{t -> 1/(4*x)}} > > =================================================================== > > Allan Hayes wrote in message <8mtc0m$7qb at smc.vnet.net>... >> >> >> >> "Gianluca Gorni" <gorni at dimi.uniud.it> wrote in message >> news:8mqvd7$18j at smc.vnet.net... >> >> >> ----------- Snip ------------- >>> An unrelated problem: the following instructions consistently crash >>> my Mac Mathematica 4 kernel: >>> >>> a = Root[-t + 2*#1 + 2*t^2*#1 + #1^3 & , 1]; >>> b = D[a, t]; >>> Solve[b == 0, t] >>> >> -- >> Gianluca , >> It crashes Mathematica 4.02 on Windows also. >> >> Allan >> --------------------- >> Allan Hayes >> Mathematica Training and Consulting >> Leicester UK >> www.haystack.demon.co.uk >> hay at haystack.demon.co.uk >> Voice: +44 (0)116 271 4198 >> Fax: +44 (0)870 164 0565 >> >> >> >> > > > >