MathGroup Archive 2000

[Date Index] [Thread Index] [Author Index]

Search the Archive

hermite surface

  • To: mathgroup at smc.vnet.net
  • Subject: [mg24944] hermite surface
  • From: "J. Seng Ja" <csb998306 at ait.ac.th>
  • Date: Thu, 24 Aug 2000 05:08:16 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

I try to generate or ploting the hermite surface with 
Bezier boundary curves by using mathematica.  But
cannot success. I need help for the  generating
hermite surface and gregory surfaces by mathemaica.Here is the attachment that I try to generate.

ahngaij





(***********************************************************************

                    Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook 
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of 
the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the 
word CacheID, otherwise Mathematica-compatible applications may try to 
use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info at wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     10147,        259]*)
(*NotebookOutlinePosition[     10795,        282]*)
(*  CellTagsIndexPosition[     10751,        278]*)
(*WindowFrame->Normal*)



Notebook[{

Cell[CellGroupData[{
Cell[BoxData[{
    \(A = {{1 - 3  t^2 + 2  t^3}, \n\ \ \ \ \ \ \ \ \ \ \ {3  t^2 - 2  t^3}, 
        \n\ \ \ \ \ \ \ \ \ \ \ {t - 2  t^2 + t^3}, \n
        \ \ \ \ \ \ \ \ \ \ \ {\(-t^2\) + t^3}}\n\), 
    \(B = {{1 - 3  u^2 + 2  u^3}, \n\ \ \ \ \ \ \ \ \ \ \ {3  u^2 - 2  u^3}, 
        \n\ \ \ \ \ \ \ \ \ \ \ {u - 2  u^2 + u^3}, \n
        \ \ \ \ \ \ \ \ \ \ \ {\(-u^2\) + u^3}}\n\), 
    \(Bernstein[n_]\  = 
      \(\(n!\)/\(i!\)\)/\(\((n - i)\)!\)\ u^\((i)\) \((1 - u)\)^\((n - i)\)\n
    \), 
    \(Bezier[n_, u_]\  = Sum[Bernstein[n, i]\ p[\([i + 1]\)], {i, 0, n}]\n\), 
  
    \(Expand[Bz[3, 0]]\n\), 
    \(DerBezier[n_, u_] = 
      n\ \ Sum[Bezier[n - 1, i, u] \((p[\([i + 2]\)] - p[\([i + 1]\)])\), \n
          \t{i, 0, n - 1}]\t\n\), 
    \(H[3  _, u_] = {Bezier[3, 0], Bezier[3, 1], DerBezier[3, 0], 
        DerBezier[3, 1]}\n\), 
    \(HermiteCurve = H[3  _, u_].B\n\n\), 
    \(ParametricPlot3D[HermiteCurve, {u, 0, 1}, AspectRatio -> Automatic\n
      \t\t]\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\)}], "Input"],

Cell[BoxData[
    \({{1 - 3\ t\^2 + 2\ t\^3}, {3\ t\^2 - 2\ t\^3}, {t - 2\ t\^2 + t\^3}, {
        \(-t\^2\) + t\^3}}\)], "Output"],

Cell[BoxData[
    \({{1 - 3\ u\^2 + 2\ u\^3}, {3\ u\^2 - 2\ u\^3}, {u - 2\ u\^2 + u\^3}, {
        \(-u\^2\) + u\^3}}\)], "Output"],

Cell[BoxData[
    \(\(\((1 - u)\)\^\(\(-i\) + n\)\ u\^i\ \(n!\)\)\/\(\(i!\)\ 
        \(\((\(-i\) + n)\)!\)\)\)], "Output"],

Cell[BoxData[
    \(Part::"pspec" \( : \ \) 
      "Part specification \!\(1 + i\) is neither an integer nor a list of \
integers."\)], "Message"],

Cell[BoxData[
    \(\[Sum]\+\(i = 0\)\%n Bernstein[n, i]\ 
        p\[LeftDoubleBracket]i + 1\[RightDoubleBracket]\)], "Output"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 1 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 2 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 3 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(General::"stop" \( : \ \) 
      "Further output of \!\(Part :: \"partd\"\) will be suppressed during \
this calculation."\)], "Message"],

Cell[BoxData[
    \(p\[LeftDoubleBracket]1\[RightDoubleBracket] - 
      3\ u\ p\[LeftDoubleBracket]1\[RightDoubleBracket] + 
      3\ u\^2\ p\[LeftDoubleBracket]1\[RightDoubleBracket] - 
      u\^3\ p\[LeftDoubleBracket]1\[RightDoubleBracket] + 
      3\ u\ p\[LeftDoubleBracket]2\[RightDoubleBracket] - 
      6\ u\^2\ p\[LeftDoubleBracket]2\[RightDoubleBracket] + 
      3\ u\^3\ p\[LeftDoubleBracket]2\[RightDoubleBracket] + 
      3\ u\^2\ p\[LeftDoubleBracket]3\[RightDoubleBracket] - 
      3\ u\^3\ p\[LeftDoubleBracket]3\[RightDoubleBracket] + 
      u\^3\ p\[LeftDoubleBracket]4\[RightDoubleBracket]\)], "Output"],

Cell[BoxData[
    \(Part::"pspec" \( : \ \) 
      "Part specification \!\(2 + i\) is neither an integer nor a list of \
integers."\)], "Message"],

Cell[BoxData[
    \(Part::"pspec" \( : \ \) 
      "Part specification \!\(1 + i\) is neither an integer nor a list of \
integers."\)], "Message"],

Cell[BoxData[
    \(n\ \(\[Sum]\+\(i = 0\)\%\(n - 1\)Bz[n - 1, i, u]\ 
          \((p\[LeftDoubleBracket]i + 2\[RightDoubleBracket] - 
              p\[LeftDoubleBracket]i + 1\[RightDoubleBracket])\)\)\)], 
  "Output"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 1 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 2 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(Part::"partd" \( : \ \) 
      "Part specification \!\(p \\[LeftDoubleBracket] 3 \
\\[RightDoubleBracket]\) is longer than depth of object."\)], "Message"],

Cell[BoxData[
    \(General::"stop" \( : \ \) 
      "Further output of \!\(Part :: \"partd\"\) will be suppressed during \
this calculation."\)], "Message"],

Cell[BoxData[
    \({\((1 - u)\)\^3\ p\[LeftDoubleBracket]1\[RightDoubleBracket] + 
        3\ \((1 - u)\)\^2\ u\ p\[LeftDoubleBracket]2\[RightDoubleBracket] + 
        3\ \((1 - u)\)\ u\^2\ p\[LeftDoubleBracket]3\[RightDoubleBracket] + 
        u\^3\ p\[LeftDoubleBracket]4\[RightDoubleBracket], 
      \((1 - u)\)\^3\ p\[LeftDoubleBracket]1\[RightDoubleBracket] + 
        3\ \((1 - u)\)\^2\ u\ p\[LeftDoubleBracket]2\[RightDoubleBracket] + 
        3\ \((1 - u)\)\ u\^2\ p\[LeftDoubleBracket]3\[RightDoubleBracket] + 
        u\^3\ p\[LeftDoubleBracket]4\[RightDoubleBracket], 
      3\ \((Bz[2, 0, 0]\ 
              \((\(-p\[LeftDoubleBracket]1\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]2\[RightDoubleBracket])\) + 
            Bz[2, 1, 0]\ 
              \((\(-p\[LeftDoubleBracket]2\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]3\[RightDoubleBracket])\) + 
            Bz[2, 2, 0]\ 
              \((\(-p\[LeftDoubleBracket]3\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]4\[RightDoubleBracket])\))\), 
      3\ \((Bz[2, 0, 1]\ 
              \((\(-p\[LeftDoubleBracket]1\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]2\[RightDoubleBracket])\) + 
            Bz[2, 1, 1]\ 
              \((\(-p\[LeftDoubleBracket]2\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]3\[RightDoubleBracket])\) + 
            Bz[2, 2, 1]\ 
              \((\(-p\[LeftDoubleBracket]3\[RightDoubleBracket]\) + 
                  p\[LeftDoubleBracket]4\[RightDoubleBracket])\))\)}\)], 
  "Output"],

Cell[BoxData[
    \({3\ \((u - 2\ u\^2 + u\^3)\)\ 
          \((Bz[2, 0, 0]\ 
                \((\(-p\[LeftDoubleBracket]1\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]2\[RightDoubleBracket])\) + 
              Bz[2, 1, 0]\ 
                \((\(-p\[LeftDoubleBracket]2\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]3\[RightDoubleBracket])\) + 
              Bz[2, 2, 0]\ 
                \((\(-p\[LeftDoubleBracket]3\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]4\[RightDoubleBracket])\))\) + 
        3\ \((\(-u\^2\) + u\^3)\)\ 
          \((Bz[2, 0, 1]\ 
                \((\(-p\[LeftDoubleBracket]1\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]2\[RightDoubleBracket])\) + 
              Bz[2, 1, 1]\ 
                \((\(-p\[LeftDoubleBracket]2\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]3\[RightDoubleBracket])\) + 
              Bz[2, 2, 1]\ 
                \((\(-p\[LeftDoubleBracket]3\[RightDoubleBracket]\) + 
                    p\[LeftDoubleBracket]4\[RightDoubleBracket])\))\) + 
        \((3\ u\^2 - 2\ u\^3)\)\ 
          \((p\[LeftDoubleBracket]1\[RightDoubleBracket]\ \((1 - u_)\)\^3 + 
              3\ p\[LeftDoubleBracket]2\[RightDoubleBracket]\ 
                \((1 - u_)\)\^2\ u_ + 
              3\ p\[LeftDoubleBracket]3\[RightDoubleBracket]\ \((1 - u_)\)\ 
                u_\^2 + p\[LeftDoubleBracket]4\[RightDoubleBracket]\ u_\^3)
            \) + \((1 - 3\ u\^2 + 2\ u\^3)\)\ 
          \((p\[LeftDoubleBracket]1\[RightDoubleBracket]\ \((1 - u_)\)\^3 + 
              3\ p\[LeftDoubleBracket]2\[RightDoubleBracket]\ 
                \((1 - u_)\)\^2\ u_ + 
              3\ p\[LeftDoubleBracket]3\[RightDoubleBracket]\ \((1 - u_)\)\ 
                u_\^2 + p\[LeftDoubleBracket]4\[RightDoubleBracket]\ u_\^3)\)}
      \)], "Output"],

Cell[BoxData[
    \(ParametricPlot3D::"plld" \( : \ \) 
      "Limits for \!\(0\) in \!\({0, 1, 1}\) must have distinct numerical \
values."\)], "Message"],

Cell[BoxData[
    \(ParametricPlot3D::"ppx" \( : \ \) 
      "Graphics3D object calculated in ParametricPlot3D is empty."\)], 
  "Message"],

Cell[BoxData[
    \(ParametricPlot3D[w, {0, 1, 1}, {u, 0, 1}, AspectRatio \[Rule] Automatic]
      \)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(\(\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\)\)], "Input"],

Cell[BoxData[
    \(\(\n\n\n\n\n\)\)], "Input"],

Cell[BoxData[
    \(\n\)], "Input"],

Cell[BoxData[
    \(\n\)], "Input"],

Cell[BoxData[
    \(\(\n\n\)\)], "Input"],

Cell[BoxData[
    \(\n\)], "Input"]
},
FrontEndVersion->"Microsoft Windows 3.0",
ScreenRectangle->{{0, 640}, {0, 424}},
WindowSize->{463, 284},
WindowMargins->{{0, Automatic}, {Automatic, 5}}
]


(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of 
the file.  The cache data will then be recreated when you save this file 
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{

Cell[CellGroupData[{
Cell[1731, 51, 1022, 20, 747, "Input"],
Cell[2756, 73, 131, 2, 63, "Output"],
Cell[2890, 77, 131, 2, 63, "Output"],
Cell[3024, 81, 123, 2, 52, "Output"],
Cell[3150, 85, 146, 3, 39, "Message"],
Cell[3299, 90, 128, 2, 53, "Output"],
Cell[3430, 94, 175, 3, 39, "Message"],
Cell[3608, 99, 175, 3, 39, "Message"],
Cell[3786, 104, 175, 3, 39, "Message"],
Cell[3964, 109, 157, 3, 55, "Message"],
Cell[4124, 114, 623, 10, 51, "Output"],
Cell[4750, 126, 146, 3, 39, "Message"],
Cell[4899, 131, 146, 3, 39, "Message"],
Cell[5048, 136, 218, 4, 56, "Output"],
Cell[5269, 142, 175, 3, 39, "Message"],
Cell[5447, 147, 175, 3, 39, "Message"],
Cell[5625, 152, 175, 3, 39, "Message"],
Cell[5803, 157, 157, 3, 55, "Message"],
Cell[5963, 162, 1578, 27, 182, "Output"],
Cell[7544, 191, 1873, 33, 235, "Output"],
Cell[9420, 226, 155, 3, 39, "Message"],
Cell[9578, 231, 139, 3, 39, "Message"],
Cell[9720, 236, 113, 2, 43, "Output"]
}, Open  ]],
Cell[9848, 241, 87, 1, 427, "Input"],
Cell[9938, 244, 47, 1, 107, "Input"],
Cell[9988, 247, 35, 1, 43, "Input"],
Cell[10026, 250, 35, 1, 43, "Input"],
Cell[10064, 253, 41, 1, 59, "Input"],
Cell[10108, 256, 35, 1, 43, "Input"]
}
]
*)




(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)




  • Prev by Date: RE:Email (corrected)
  • Next by Date: Is it possible to use AxesLabel with PlotVectorField
  • Previous by thread: RE:Email (corrected)
  • Next by thread: Is it possible to use AxesLabel with PlotVectorField