Re: Infinite sum of n^2 Exp[-n^2]

• To: mathgroup at smc.vnet.net
• Subject: [mg26486] Re: [mg26477] Infinite sum of n^2 Exp[-n^2]
• From: BobHanlon at aol.com
• Date: Thu, 28 Dec 2000 02:52:24 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```This may not be what you want, but it may help you after some investigation
of EllipticTheta.

Let s  equal

Sum[n^2 * Exp[-a* n^2], {n, -Infinity, Infinity}];

Since

n^2 * Exp[-a * n^2] == -D[Exp[-a * n^2], a]

True

then for

s1 = Sum[Exp[-a* n^2], {n, -Infinity, Infinity}]

EllipticTheta[3, 0, E^(-a)]

we have

s = -D[s1, a]

Derivative[0, 0, 1][EllipticTheta][3, 0, E^(-a)]/E^a

Plot[s, {a, 1, 5}];

est = Sum[n^2 * Exp[-a* n^2], {n, -25, 25}];

Plot[est, {a, 1, 5}];

Table[s - est, {a, 1., 5., .1}] // Chop

{-7.57002049933675*^-9, -2.2411962286028597*^-9,
-8.026793674176247*^-10, -3.2794589266416097*^-10,
-1.4620038513157851*^-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}

Bob Hanlon

In a message dated 12/22/00 11:08:44 PM, siegman at stanford.edu writes:

>Mathematica can do the infinite sums (-Infinity to Infinity) of
>
>   Exp[-n^2]
>
>and also
>
>   Exp[- a n^2]
>
>in closed form, but not
>
>   n^2 Exp[-n^2]
>
>or better
>
>   n^2 Exp[- a n^2]
>
>Are there known closed analytical forms for these?

```

• Prev by Date: Re: Question: nonlinear differential equation with boundary conditions
• Next by Date: HELP! Working version of "The Knife" package?
• Previous by thread: Re: Infinite sum of n^2 Exp[-n^2]
• Next by thread: Symbolic Fourier Transform