Re: algorithm to generate 1/f noise
- To: mathgroup at smc.vnet.net
- Subject: [mg22122] Re: algorithm to generate 1/f noise
- From: Roland Franzius <Roland.Franzius at uos.de>
- Date: Wed, 16 Feb 2000 02:34:38 -0500 (EST)
- Organization: RRZN - Newsserver Test
- References: <8889s2$c5o@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi David, do you think of something like this? SektralDensity[k_, dk_] := Log[1 + dk/k] Plot[SpektralDensity[k, 0.1], {k, 100, 2000}] aTrial = Table[Random[Real, {-p[k, 0.1], p[k, 0.1]}], {k, 100, 2000, 0.1}]; ListPlot[aTrial] functionBase[t_] = Cos[Table[ 2 Pi k t, {k, 100, 2000, 0.1}]]; f[t_] := aTrial . functionBase[t]; ListPlot[Table[f[t], {t, 0, 1, 0.01}], PlotJoined -> True, PlotRange -> All] have fun (and noise) roland "David E. Burmaster" schrieb: > > Hi > > Can anyone point me towards a good algorithm or package to generate 1/f > noise in a time series using Mathematica?? > > Pointers to books and articles (using Mathematica) also appreciated! > > many thanks, and > best wishes > Dave > > ++++++++++++++++++++++++++++++ > David E. Burmaster, Ph.D. > Alceon Corporation > POBox 382669 > Harvard Square Station > Cambridge, MA 02238-2669 > > Voice 617-864-4300 > Fax 617-864-9954 > > Web http://www.Alceon.com > Email deb at Alceon.com > > +++++++++++++++++++++++++++++++ -- Roland Franzius +++ exactly <<n>> lines of this message have value <<FALSE>> +++