Re: Integrate with If
- To: mathgroup at smc.vnet.net
- Subject: [mg22203] Re: [mg22180] Integrate with If
- From: schadow at netcom.ca
- Date: Fri, 18 Feb 2000 02:34:39 -0500 (EST)
- References: <200002170624.BAA04409@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
> Why does > > Integrate[If[Sin[t] > 0, 1, 0] , {t, -Pi, Pi}] > > evaluate to 2Pi? > > Plot[If[Sin[t] > 0, 1, 0] , {t, -Pi, Pi} ] > > looks all right. > > > Puzzled, > > Johan Berglind, > Chalmers, Goteborg, > Sweden. > I have no an answer, but here are some other 'interesting' results f[x_] = If[Sin[x] > 0, 1, 0] Integrate[f[x], {x, -\[Pi], 0}] gives 0 (correc) Integrate[f[x], {x, -\[Pi], 2}] gives 0 (wrong) \!\(Integrate[f[x], {x, \(-\[Pi]\), \[Pi] - 1\/100000}]\) gives 0 (wrong). One way to get a correct result is: Integrate[f[x], {x, -\[Pi], 0, \[Pi]}] or with NIntegrate NIntegrate[f[x], {x, -\[Pi], 0, \[Pi]}] NIntegrate[f[x], {x, -\[Pi], \[Pi]}] Wolfgang ======================================================================== Wolfgang Schadow Phone: +1-604-222-1047 ext. 6453 (office) TRIUMF +1-604-875-6066 (home) Theory Group FAX: +1-604-222-1074 4004 Wesbrook Mall Vancouver, B.C. V6T 2A3 email: schadow at triumf.ca Canada www : http://www.triumf.ca/people/schadow ========================================================================
- References:
- Integrate with If
- From: "Johan Berglind,5879" <johanbe@chl.chalmers.se>
- Integrate with If