Re: Problem with implementing the following functions
- To: mathgroup at smc.vnet.net
- Subject: [mg23938] Re: Problem with implementing the following functions
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Fri, 16 Jun 2000 00:57:23 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <8i9o9j$29q@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, because MatchQ[(9 + Sqrt[18])/9, (Sqrt[x_] + (z_))/(y_)] gives false. thats why FullForm[(9 + Sqrt[18])/9] is Times[Rational[1, 9], Plus[9, Times[3, Power[2, Rational[1, 2]]]]] and FullForm[(Sqrt[x] + (z))/(y)] is Times[Power[y, -1], Plus[Power[x, Rational[1, 2]], z]] the 1/9 factor is stored as Rational[1/9] and *not* as Times[1,Power[9,-1]] Regards Jens Matt Herman wrote: > > Hello, > > here are the functions > > q[(Sqrt[x_] + (z_))/(y_), 1] := (x - (Floor[(z + Sqrt[x])/y]*y - > z)^2)/y > > q[(Sqrt[x_] + (z_))/(y_), n_] := > q[(z + Sqrt[x])/y, n - 2] + > a[(z + Sqrt[x])/y, n - 1]*( > m[(z + Sqrt[x])/y, n - 1] - m[(z + Sqrt[x])/y, n]) > > a[(Sqrt[x_] + (z_))/(y_), 0] := Floor[(z + Sqrt[x])/y] > > a[(Sqrt[x_] + (z_))/(y_), n_] := > Floor[(m[(z + Sqrt[x])/y, n] + Sqrt[x])/q[(z + Sqrt[x])/y, n]] > > m[(Sqrt[x_] + (z_))/(y_), 1] := Floor[(z + Sqrt[x])/y]*y - z > > m[(Sqrt[x_] + (z_))/(y_), n_] := > a[(z + Sqrt[x])/y, n - 1]*q[(z + Sqrt[x])/y, n - 1] - > m[(z + Sqrt[x])/y, n - 1] > > For some reason mathematica gives me blank inputs when I do > a[(9+Sqrt[18])/9,5] (or any n for that matter. > > Any ideas? > > Thanks, > > Matt