Re: System of lorenz equations
- To: mathgroup at smc.vnet.net
- Subject: [mg23933] Re: System of lorenz equations
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Fri, 16 Jun 2000 00:57:15 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <8i9q99$2n8@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, a) a if condition is written with If[test,trueRes,falseRes] a if-else with If[test1,trueTest1,If[test2,trueTest2,elseResult]] b) N is used as function to convert symbolic expressions like BessleJ[0,2] to floting point numbers c) eqns is a symbol and Table[eqns,{i,0,4}] gives just {eqns,eqns,eqns,eqns} d) you have to generate inner the equations explicit by Table[ x'[t][i]+a*(y[t][i]-x[t][i])+ k1*(x[t][i-1]-2 x[t][i] + x[t][i])==0, y'[t][i]+b* x[t][i]-y[t][]-x[t][i] y[t][i] + k2*(y[t][i-1]-2 y[t][i]+y[t][i+1])==0, z'[t][i]-c* z[t][i] +z[t][i] y[t][i] + k3 *(z[t][i-1]-2 z[t][i]+z[t][i+1])==0},{i,1,n-1}] and append the boundary equations on the left end right end e) you give only 3 instead of 3*49 initial conditions f) what means i ? It can't be a index to your equations because you only have 49 g) read the manual h) read a second time Regards Jens Winston Garira wrote: > > Hello, > > I am just a newcomer to Mathematica. Iam not sure of what is wrong. > Can someone help me. I am trying to solve a system of 48 Lorenz > equations which are diffusively coupled. In the system of equations, > k1, k2, and k3 are the coupling strengths (constants) which in this > case I gave the values k1=15.6, k2=8.8 and k3=5.9. In the system a, b, > and c are also constants and I assigned them values a=10, b=27, and > c=8/3. I used initial conditions x[0]=0.7, y[0]=0.3 and z[0]=-1.5. N > (is integer) represents the N th lorenz system and so it has values > from 0 to 48. In the notebook below in which I tried to plot the N=21 > Lorenz system I just got the error that x[t][21], y[t][21], z[t][21] > are not real numbers. > > Thank you > > Winston > > Lorenzs[init1_, i_,time_, k1_, k2_, k3_, {a_, b_, c_, N_}]:= > Module[{}, > lorenz=NDSolve[{ Flatten[Table[eqns, {i,0,N}]]; > if (i==0) { (* when working with the first lorenz system *) > x'[t][i]+a*(y[t][i]-x[t][i])+ k1*(x[t][1]-2 x[t][0] )==0, > y'[t][i]+b* x[t][i]-y[t][]-x[t][i] y[t][i] + k2*(y[t][1]-2 y[t][0])==0, > z'[t][i]-c* z[t][i] +z[t][i] y[t][i] + k3 *(z[t][1]-2 z[t][0])==0}, > > else if (i==N-1) { (* when working with the last lorenz system *) > x'[t][i]+a*(y[t][i]-x[t][i])+ k1*(x[t][N-2]- x[t][N-1] )==0, > y'[t][i]+b* x[t][i]-y[t][]-x[t][i] y[t][i] + k2*(y[t][N-2]- y[t][N-1])==0, > z'[t][i]-c* z[t][i] +z[t][i] y[t][i] + k3 *(z[t][N-2]-2z[t][N-1])==0}, > > else { (* when working with the lorenz system in middle *) > x'[t][i]+a*(y[t][i]-x[t][i])+ k1*(x[t][i-1]-2 x[t][i] + x[t][i])==0, > y'[t][i]+b* x[t][i]-y[t][]-x[t][i] y[t][i] + k2*(y[t][i-1]-2 y[t][i]+y[t][i+1])==0, > z'[t][i]-c* z[t][i] +z[t][i] y[t][i] + k3 *(z[t][i-1]-2 z[t][i]+z[t][i+1])==0}, > > x[0][0]==init1[[1]], > y[0][0]==init1[[2]], > z[0][0]==init1[[3]]}, > {x[i], y[i], z[i]}, > {t,0,time}, MaxSteps->200000]; > x[t_][i] := Evaluate[x[t][i] /. lorenz]; > y[t_][i]:= Evaluate[y[t][i] /. lorenz]; > z[t_][i] := Evaluate[z[t][i] /. lorenz]; > ]; > > a=10; b=27; c=8/3; N=48; > > Lorenzs[{0.7,0.3,-1.5}, 5000,15.6,8.8,5.9, {a,b,c,N}]; > Plot[{x[t][21], y[t][21], z[t][21]}, {t,0,600}, > PlotStyle->[Rule]{RGBColor[1,0,0.3],RGBColor[0,0.5,1],RGBColor[1,0,0.3]}]; > >