ReBessel Function/MeijerG/no bug
- To: mathgroup at smc.vnet.net
- Subject: [mg24058] Re[mg24048]Bessel Function/MeijerG/no bug
- From: Roberto Brambilla <rlbrambilla at cesi.it>
- Date: Thu, 22 Jun 2000 01:01:50 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Dear Richard, may be the bug has been "inserted" in version 4. With Mathematica 3 I have the correct results that agree with the numerical results. If a^2>0 and Re[k]>1/2, I obtained intg1=-I/(32Sqrt[2]Pi^2)MeijerG[{{1-k},{1,1+k}}, {{-1/2,-1/4,0,1/4,1/2},{}},(1-I)/(4a),1/4] intg2=+I/(32Sqrt[2]Pi^2)MeijerG[{{1-k},{1,1+k}}, {{-1/2,-1/4,0,1/4,1/2},{}},(1+I)/(4a),1/4] Note the last parameter r=1/4 that generalize MeijerG, as explained in the index of built-in function of Math.Book. Numerically, with a=1. and k=1 : intg1 = 0.0576747+0.0580411 I intg2 = 0.0576747-0.0580411 I Regards Roberto Roberto Brambilla CESI Via Rubattino 54 20134 Milano tel +39.2.2125.5875 fax +39.2.2125.610 rlbrambilla at cesi.it