Re: SDE's
- To: mathgroup at smc.vnet.net
- Subject: [mg25936] Re: SDE's
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Fri, 10 Nov 2000 02:40:15 -0500 (EST)
- Organization: Universitaet Leipzig
- References: <8udmgo$eiu@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I suppose that your system mean In[]:=deqn = { D[X[t], t] == a + b D[W[t], t], D[X[t], t] == a(c - X[t]) + b D[W[t], t], D[X[t], t]/X[t] == mu + sigma D[W[t], t], D[X[t], t] == a(((sigma^2)/4a) - X[t]) + sigma Sqrt[X[t]] D[W[t], t]} (please, use the correct syntax in future questions because your "notation" has several ambiguities, that the Mathematica syntax has not) In[]:=s1 = Solve[Equal @@ Subtract @@@ Transpose[List @@@ Take[deqn, 2]], X[t]] Out[]={{X[t] -> -1 + c}} form In[]:=deqn1 = deqn /. s1[[1]] /. X'[t] -> 0 Out[]={0 == a + b*Derivative[1][W][t], 0 == a + b*Derivative[1][W][t], 0 == mu + sigma*Derivative[1][W][t], 0 == a*(1 - c + (a*sigma^2)/4) + Sqrt[-1 + c]*sigma* Derivative[1][W][t]} it is to see that a==mu and sigma==b, otherwise there is no solution. With In[]:= dsol = DSolve[deqn2[[3]], W[t], t] we get Out[]={{W[t] -> -((mu*t)/sigma) + C[1]}} and In[]:=eqn3 = deqn2 /. ( D[#, t] & /@ dsol[[1]]) Out[]={True, True, True, 0 == -(Sqrt[-1 + c]*mu) + mu*(1 - c + (mu*sigma^2)/4)} and the two solutions for c In[]:=Solve[eqn3[[4]], c] Out[]={{c -> (6 + mu*sigma^2 - 2*Sqrt[1 + mu*sigma^2])/4}, {c -> (6 + mu*sigma^2 + 2*Sqrt[1 + mu*sigma^2])/4}} And you get the solutions {X[t]->1-(6 + mu*sigma^2 - 2*Sqrt[1 + mu*sigma^2])/4, W[t] -> -((mu*t)/sigma) + C[1], a->mu, b->sigma} and {X[t]->1-(6 + mu*sigma^2 + 2*Sqrt[1 + mu*sigma^2])/4, W[t] -> -((mu*t)/sigma) + C[1], a->mu, b->sigma} Regards Jens mot4201 at my-deja.com wrote: > > Hi all, > > I was wondering if anyone could share his (her) code for the exact > solutions of the following SDE's > > 1. dXt=a dt+b dWt > 2. dXt=a(c-Xt)dt+b dWt > 3. dXt/Xt=mu dt+sigma dWt > 4. dXt=a(((sigma^2)/4a)-Xt)dt+sigma sqrt(Xt) dWt > > If you could at least share the exact solutions , I would do the > simulations my self. Thank you. > > Mark > > Sent via Deja.com http://www.deja.com/ > Before you buy.