RE: Equivalent functions generate different plots
- To: mathgroup at smc.vnet.net
- Subject: [mg26159] RE: [mg26112] Equivalent functions generate different plots
- From: "David Park" <djmp at earthlink.net>
- Date: Thu, 30 Nov 2000 01:04:04 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Use Plot[{f[t], g[t]} // Evaluate, {t, 0, 2.2}]; When you don't evaluate the plotting function g[t] first, then for each t point Mathematica evaluates g[t]. When t == 1 it evaluates g[1] -> Fit[data,{1,1,1^2}], which is not what you intended. An alternative is to define g[t_] with a Set: g[t_] = Fit[data, {1, t, t^2}, t] Then Plot[{f[t], g[t]}, {t, 0, 2.2}]; works the way you wish. David Park djmp at earthlink.net http://home.earthlink.net/~djmp/ > -----Original Message----- > From: GERMAN [mailto:gerbual at col2.telecom.com.co] To: mathgroup at smc.vnet.net > Hi, Group: > > With: > > In[1]:= > data = {{0, 79.6}, {0.2, 79.2}, {0.4, 77.1}, {0.6, 73.7}, {0.8, 69.1}, > {1., 63.2}}; > > I can to get its cuadratic regression function: > > In[2]:= > Fit[data, {1, t, t^2}, t] > > Out[2]= > 79.68214285714285` + 0.21249999999984936` t - 16.741071428571246` t^2 > > Then, I can define the regression function in two different, but > equivalent ways: > > First: copying and pasting the last output: > > In[3]:= > f[t_] := > 79.68214285714285`+ 0.21249999999984936` t - 16.741071428571246 t^2 > > Second: using directly the *Fit* function in the right hand: > > In[4]:= > g[t_] := Fit[data, {1, t, t^2}, t] > > In this conditions: > > In[5]:= > f[t] == g[t] > > Out[5]= > True > > However: > > In[6]:= > Plot[{f[t], g[t]}, {t, 0, 2.2}] > > Out[6]= > > (GRAPHICS ...!!!) > > genere two different plots (a straight line and a curve). The curve is > well, but the straight line not. I DON'T UNDERSTAND. Can somebody > explain to me this inconsistency? > > Thanks in advance. > > GERMAN >